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1 Working with Entities

Generating Entities When Events Occur

The Event-Based Entity Generator block enables you to generate entities

in response to events that occur during the simulation. Event times and

the time intervals between pairs of successive entities are not necessarily
predictable in advance. This section describes the events that can cause entity
generation, in these topics:

¢ “Detecting Sample Time Hits” on page 1-2

¢ “Detecting Changes in Signal Values” on page 1-4
¢ “Detecting Edges in Trigger Signals” on page 1-5
¢ “Detecting Function Calls” on page 1-7

Generating entities when events occur might be appropriate if you want the
dynamics of your model to determine when to generate entities. For example,
if you want to generate an entity every time a Stateflow® chart transitions
from state A to state B, then you configure the Stateflow chart to output a
function call upon such a transition and configure the Event-Based Entity
Generator block to react to each function call by generating an entity. As
another example, if you want to generate an entity every time the length of a
queue changes, then you configure the queue to output a signal indicating the
queue length and configure the Event-Based Entity Generator block to react
to changes in that signal’s value by generating an entity.

Note To specify intergeneration times between pairs of successive entities,
use the Time-Based Entity Generator block as described in “Creating Entities
Using Intergeneration Times” in the getting started documentation.

Detecting Sample Time Hits

You can configure the Event-Based Entity Generator block so that it generates
entities in response to updates in a signal. More explicitly, whenever the
block producing that signal recomputes and outputs the signal value, the
Event-Based Entity Generator block generates an entity. The actual value

of the signal and the question of whether recomputing the value yields a
different result compared to the previous time step are irrelevant to the entity
generation process; only the time of the output is relevant.
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Configuring the Block to Detect Sample Time Hits

To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Sample time hit
from port ts. This causes the block to have an input signal port labeled ts.
During the simulation, the Event-Based Entity Generator block generates
entities in response to updates in the signal connected to this ts port.

Sample Use Cases
Here are a few scenarios that illustrate this method for generating entities:

¢ The ts signal is the output of a block with an explicit Sample time
parameter. Regardless of the value of the ts signal, the Event-Based Entity
Generator block generates an entity periodically, according to the sample
time of the driving block.

Compared to using a Time-Based Entity Generator block with
Distribution set to Constant, this event-based approach is a more direct
way to synchronize entity generation events with sample time hits and
avoid possible roundoff errors. Below is an example.

12:34 ts &jmcuuT -

Digital Clock

Ewent-Based
Entity Generatar

For other examples that use this entity-generation method to effect desired
simultaneity of events, see “Example: Race Conditions at a Switch” on
page 2-25.

¢ The ts signal is the output of a triggered subsystem whose Propagate
execution context across subsystem boundary parameter is selected.
Whenever Simulink® calls the subsystem and recomputes the output, the
Event-Based Entity Generator block generates an entity.
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Note Do not put the Event-Based Entity Generator block inside a
triggered subsystem. Like other blocks that possess entity ports, the
Event-Based Entity Generator block is not valid inside a triggered
subsystem. See also “Detecting Edges in Trigger Signals” on page 1-5.

® The ts signal is a statistical output signal from a SimEvents™ block.
Whenever the block recomputes and outputs the statistic, the Event-Based
Entity Generator block generates an entity.

Detecting Changes in Signal Values

You can configure the Event-Based Entity Generator block so that it generates
entities in response to numerical changes in a signal. This can be useful if the
changes in the signal’s value have some significance in your simulation; for
example, a signal representing the length of a queue changes whenever an
entity arrives at or departs from the queue.

Configuring the Block to Detect Value Changes

To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Change in signal
from port vc. This causes the block to have an input signal port labeled
ve. Also, set the Type of value change parameter to indicate whether the
block should generate an entity whenever the signal connected to this ve port
increases, decreases, or exhibits either type of change.

Sample Use Cases

Typically, the ve signal is one that you expect to change values at only a
discrete set of times during the simulation. In some applications, the signal
is discrete valued. Here are a few scenarios that illustrate this method for
generating entities:

* The ve signal is an integer-valued statistical output signal from a
SimEvents block. For example, the statistic could be the number of entities
in a queue (shown below) or the number of entities that have departed from
the block. Whenever the statistic changes values, the Event-Based Entity
Generator block generates an entity.
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¢ The ve signal is the output of a discrete-valued block, such as Relational
Operator, Compare to Zero, or Direct Lookup Table (n-D). Whenever the
logical value or the lookup table value changes, the Event-Based Entity
Generator block generates an entity.

» 4= doubl Q- ouT
ouble Wi L B—

Relational [ata Type Conversion
Operator Evwent-Based
Entity Generator

— {z=0 o ‘ij; LT p—

Compare [rata Twpe Conversiond
To Zero Event-Based
Entity Generatort

10 TH
—™ E_l—“D e i’ﬁHFUT h—
Drirect Lookup Evwent-Based
Table (n-0) Entity Generator2

Detecting Edges in Trigger Signals

You can configure the Event-Based Entity Generator block so that it generates
entities in response to rising or falling edges in a signal. This can be useful
if the signal’s zero crossings have some significance in your simulation; for
example, a signal representing acceleration crosses zero whenever the velocity
reverses direction. A signal whose rising and falling edges are used to invoke
a behavior during the simulation is called a trigger signal.
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A rising edge is an increase from a negative or zero value to a positive value (or
zero if the initial value is negative). A falling edge is a decrease from a positive
or a zero value to a negative value (or zero if the initial value is positive).

Configuring the Block to Detect Edges

To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Trigger from
port tr. This causes the block to have an input signal port labeled tr.
Also, set the Trigger type parameter to indicate whether the block should
generate an entity whenever the signal connected to this tr port has a rising
edge, a falling edge, or either type of edge.

Note Do not put the Event-Based Entity Generator block inside a triggered
subsystem, but rather attach the trigger signal directly to the block’s tr port.
Like other blocks that possess entity ports, the Event-Based Entity Generator
block is not valid inside a triggered subsystem.

Sample Use Cases
Here are a few scenarios that illustrate this method for generating entities:

® The tr signal arises from the time-driven dynamics of your system.
Whenever the signal crosses zero, the Event-Based Entity Generator block
generates an entity.

¢ The tr signal is a real-valued statistical output signal from a SimEvents
block, plus a negative constant. Whenever the statistic crosses a threshold
that is the absolute value of the constant, the sum crosses zero and the
Event-Based Entity Generator block generates an entity.

In the figure below, the Event-Based Entity Generator block generates a
new entity each time the queue’s average waiting time signal crosses the
threshold of 5 seconds.
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The subsystem between the queue and the entity generator, shown below,
adds -5 to the average waiting time value to translate the threshold
from 5 to 0. To understand why this computation occurs in a subsystem
rather than at the top level of the model hierarchy, see “Timing Issues

in SimEvents Models” on page 9-2.
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Detecting Function Calls

A function-call signal is a special type of signal that directly defines a time
instant and whose typical purpose is to call a subsystem or other functional
operation at that instant. A function-call signal can come from an Entity
Departure Event to Function-Call Event block, a Signal-Based Event to
Function-Call Event block, a Function-Call Generator block, or a Stateflow
block.

You can configure the Event-Based Entity Generator block so that it generates
entities in response to a function call. This can be useful for generating
new entities based on the behavior of existing entities in the simulation,
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generating multiple new entities simultaneously, or incorporating Stateflow
dynamics into your SimEvents model.

Configuring the Block to Detect Function Calls

To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Function call
from port fcn. This causes the block to have an input signal port labeled
fen. During the simulation, the Event-Based Entity Generator block
generates entities in response to function calls in the signal connected to
this fen port.

Note Do not put the Event-Based Entity Generator block inside a
function-call subsystem, but rather attach the function-call signal directly
to the block’s fen port. Like other blocks that possess entity ports, the
Event-Based Entity Generator block is not valid inside a function-call
subsystem.

Sample Use Cases
Here are a few scenarios that illustrate this method for generating entities:

¢ An Entity Departure Event to Function-Call Event block issues a function
call whenever an entity departs from it. Whenever this occurs, the
Event-Based Entity Generator block generates an entity.

In the figure below, the Event-Based Entity Generator block generates a
new entity each time an entity departs from the queue (or, equivalently,
each time an entity arrives at the server).
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® A Signal-Based Event to Function-Call Event block with ts and el input
ports issues a function call whenever the ts signal is updated while the
el signal is positive. During time intervals when el is positive, the
Event-Based Entity Generator block can generate entities, where the
specific times depend on updates of the ts signal. When el is zero or
negative, the Event-Based Entity Generator block generates no entities,
even if the ts signal has an update. The el signal provides a way to enable
and disable entity generation.

In the figure below, the Event-Based Entity Generator block generates
entities at integer-valued times when the queue is nonempty.
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¢ A Function-Call Generator block issues one or more function calls
periodically during the simulation. Each function call causes the
Event-Based Entity Generator block to generate an entity.

In the figure below, the two Function-Call Generator blocks share the same
sample time of 1 second, but the top block generates one function call at a
time, while the bottom one generates three simultaneous function calls at
a time. The icon changes to reflect the multiplicity of function calls. As a
result, the top Event-Based Entity Generator block generates one entity
each second, while the bottom one generates three entities simultaneously
each second.
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Note If you generate multiple entities simultaneously, then consider

the appropriateness of other blocks in the model. For example, if three
simultaneously generated entities advance to a single server, then you
might want to insert a queue between the generator and the server so that
entities (in particular, the second and third entities) have a place to wait
for the server to become available.

A Stateflow block issues a function-call output whenever the state takes a
particular transition, as defined in the chart. Each function call causes the
Event-Based Entity Generator block to generate an entity.

E:;LI out_fon|— - — - —e{fen ﬁﬁl“DUT b

Ewvent-Based
Chart Entity Generator
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Using Generation Times from a Vector

If you have an explicit list of unique times at which you want to generate
entities, you can configure the Time-Based Entity Generator block so that it
generates entities at these times. To do this, create a vector of intergeneration
times. Intergeneration times are the differences between pairs of successive
time values in your list.

These topics provide instructions and motivation:

® “Configuring the Block to Generate Entities at Specified Times” on page
1-11

e “Sample Use Cases” on page 1-12

Configuring the Block to Generate Entities at
Specified Times

To generate entities at specified times, follow this procedure:

1 Set the Time-Based Entity Generator block’s Generate entities with
parameter to Intergeneration time from port t. A signal input port
labeled t appears on the block.

2 Depending on whether you want to generate an entity at T=0, either
select or clear the Generate entity at simulation start option in the
Time-Based Entity Generator block.

3 Create a column vector, gentimes, that lists 0 followed by the nonzero
times at which you want to create entities, in strictly ascending sequence.
You can create this vector by entering the definition in the MATLAB®
Command Window, by loading a MAT-file that you previously created, or by
manipulating a variable that a To Workspace or Discrete Event Signal to
Workspace block previously created.

An example of a column vector listing generation times is below.

gentimes = [0; 0.9; 1.7; 3.8; 3.9; 6];

1-11
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4 Apply the diff function to the vector of generation times, thus creating
a vector of intergeneration times.

intergentimes = diff(gentimes);

5 Insert an Event-Based Sequence block in the model and connect it to the t
input port of the Time-Based Entity Generator block.

}_|_|_|7 -t %DUT,;

Event-Based Time-Based
Sequence Entity Generator

6 In the dialog box of the Event-Based Sequence block, set Vector of output
values to intergentimes. Set the Form output after final data value
by parameter to Setting to infinity to halt the generation process if
the simulation time exceeds your maximum generation time.

Sample Use Cases
Using explicit entity-generation times might be appropriate if you want to

® Recreate an earlier simulation whose intergeneration times you saved
using a Discrete Event Signal to Workspace block.

¢ Study your model’s behavior under unusual circumstances and have
created a series of entity generation times that you expect to produce
unusual circumstances.

¢ Verify simulation behavior observed elsewhere, such as a result reported in
a paper.
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Setting Attributes of Entities

e “Example: Setting Attributes” on page 1-14
* “When to Use Attributes” on page 1-16

You can attach data to an entity using one or more attributes of the entity.
Each attribute has a name and a numeric value. For example, if your entities
represent a message that you are transmitting across a communication
network, you might assign data called 1ength that indicates the length of
each particular message. You can read or change the values of attributes
during the simulation.

The Set Attribute block assigns attributes on each arriving entity.
Assignments can create new attributes or change the values of existing
attributes. Attribute values can come from information you enter in the
block’s dialog box or from signals.

Other blocks can set particular kinds of attributes:

® The Entity Departure Counter block can set an attribute whose value is
the entity count.

® The Single Server block can set an attribute whose value is the residual
service time for a preempted entity. For more information, see “Preempting
an Entity in a Server” on page 4-10.

To learn how to query entities for attribute values, see “Accessing Attributes

of Entities” on page 1-19. To learn how to aggregate attributes from distinct
entities, see “Combining Entities” on page 1-24.
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Example: Setting Attributes

The example below illustrates different ways of assigning attribute values to

entities.
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After each entity departs from the Set Attribute block, it possesses the
attributes listed in the table.

Attribute Attribute Value | Method for Setting Attribute Value
Name
Count N, for the In Entity Departure Counter dialog box:
Nth entity . .
departing from Write count to attribute = On
the Time-Based Attribute name = Count
Entity Generator | Actually, the entity generator creates the Count attribute
block with a value of 0. The Entity Departure Counter block
sets the attribute value according to the entity count.
Type Constant value of | A1 row of table in Set Attribute dialog box:
3
Name = Type
Value from = Dialog
Value = 3
Length Next number Event-Based Sequence block connected to Set Attribute

in the sequence
produced by
Event-Based
Sequence block

block in which A2 row of table in dialog box is configured

as follows:

Name = Length

Value from = Signal port
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In this example, each Attribute Scope block plots values of a different
attribute over time. Notice from the vertical axes of the plots below that the
Count values increase by 1 with each entity, the Type values are constant, and
the Length values show cyclic repetition of a sequence.

Attribute Value from Entity Departure Counter
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Count

Attribute Walue from Dialog
10

Type

=
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Attribute Value from Signal

Length

When to Use Attributes

In some modeling situations, it is important to attach data to an entity instead
of merely creating the data as the content of a signal. This section discusses
the importance of considering not only the topology of your block diagrams,
but also the timing of data signals appearing in SimEvents models.

Example: Reusing Data

Consider a queue-server example with varying service times, where you want
to plot the service time against entity count for each entity that departs
from the server. A signal specifies the service time to use for each entity.
Although connecting the same signal to the Signal Scope block appears
correct topologically, the timing in such an arrangement is incorrect because
of the delay at the server. That is, the signal has one value when a given
entity arrives at the server and another value when the same entity arrives
at the scope.

A correct way to implement such an example involves attaching the service
time to each entity using an attribute and retrieving the attribute value from
each entity upon its departure from the server. That way, the scope receives
the service time associated with each entity, regardless of the delay between
arrival times at the server and the scope.
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Example: Manipulating Data

To

manipulate the value of an attribute that you originally set using a signal,

follow these rules:

Query the value and then manipulate it, instead of creating a branch line
from the signal and manipulating that. To query an entity for the value of
an attribute, use the Get Attribute block.

Perform the manipulation in a discrete event subsystem, as described in
Chapter 9, “Controlling Timing with Subsystems”. This ensures correct
timing of the manipulation of the event-based signal that represents the
attribute value.

Insert a storage block with a delay of zero after the Get Attribute block, if
you use the manipulated attribute value in a subsequent block on the same
entity path. This ensures that the subsequent block reads the up-to-date
results of the manipulation upon the entity’s arrival. For details, see
“Interleaving of Block Operations” on page 14-8.
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The example below illustrates the use of the Get Attribute block to query an
entity for its attribute value, the use of the Discrete Event Subsystem block to
contain the manipulation of the attribute value, and the insertion of a Single
Server block between the Get Attribute and Set Attribute blocks.
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Accessing Attributes of Entities

The section “Setting Attributes of Entities” on page 1-13 described how to
use the Set Attribute block to attach data to entities near the time that you
generate the entities. You can also use that block to change the value of an
attribute at any point in an entity path.

To access data that has been attached to an entity, use one of these methods:

* Send the entity to a Get Attribute block. The Get Attribute block retrieves
attributes on each arriving entity and creates signals with the attribute
values.

For example, see the subsystem of the model described in “Adding
Event-Based Behavior” in the getting started documentation.

® Send the entity to an Attribute Scope block and set the block’s Y attribute
name parameter to the name of the attribute. Alternatively, send the
entity to an X-Y Attribute Scope block and set the block’s X attribute
name and Y attribute name parameters to the names of two attributes.

For example, see Chapter 10, “Plotting Data”.

® Name the attribute in the dialog box of a block that supports the use
of attribute values for block parameters. For example, you can use an
attribute value to specify the service time in the Single Server block or the
selected entity output port in the Output Switch block.

For example, see “Example: Using an Attribute to Select an Output Port”
in the getting started documentation.

Tip If your entity possesses an attribute containing a desired service time,
switching criterion, or other quantity that a block can obtain from either
an attribute or signal, it is usually better to use the attribute directly than
to create a signal with the attribute’s value and ensure that the signal is
up-to-date when the entity arrives. For a comparison of the two approaches,
see “Example: Using a Signal or an Attribute” on page 13-19.
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Counting Entities

Counting entities can be useful for statistical measures and for understanding
a simulation. This section describes these techniques for counting entities

in different ways:

® “Counting Departures Across the Simulation” on page 1-20

® “Counting Departures per Time Instant” on page 1-20

® “Resetting a Counter Upon an Event” on page 1-22

® “Associating Each Entity with Its Index” on page 1-23

For troubleshooting purposes, see also “Viewing Entity Locations” on page
13-9.

Counting Departures Across the Simulation

Use the #d or #a output signal from a block to learn how many entities have
departed from (or arrived at) a particular block and when their departures
occurred. This method of counting is cumulative throughout the simulation.
These examples use the #d output signal to count departures:

¢ “Building a Simple Discrete-Event Model” in the getting started
documentation

e “Example: First Entity as a Special Case” on page 7-10

* “Stopping Based on Entity Count” on page 11-34

Counting Departures per Time Instant
In some cases, you want to visualize how many entities have departed from a
particular block and when their departures occurred, but you want to restart
the counter at each time instant. This can be useful for

® Detecting simultaneous departures

¢ Focusing on the departure times without needing to accommodate large
counts (for example, in a plot with a large range of axis values)

1-20



Counting Entities

Use the Instantaneous Entity Counting Scope to plot the number of entities
that have arrived at each time instant. The block restarts the count from 1
when the time changes. As a result, the count is cumulative for a given time
instant, but not cumulative across the entire simulation.

Example: Counting Simultaneous Departures from a Server

In the example below, the Infinite Server block sometimes completes service
on multiple entities simultaneously. The Instantaneous Entity Counting
Scope indicates how many entities departed from the server at each fixed
time instant during the simulation.
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Murnber of Entities at Each Time Instant
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Resetting a Counter Upon an Event

Use the Entity Departure Counter block with Reset counter upon set

to Change in signal from port vc or Trigger from port tr to count
entity departures via a resettable counter. For details on this feature, see the
reference page for the Entity Departure Counter block.

Example: Resetting a Counter After a Transient Period

The example below counts entity departures from a queuing system, but
resets the counter after an initial transient period.

Step
I—P we
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1 0UT 23|I OUT —3{IN WTHB— MDUT S TR
: ; 2
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FIFO Queua M-Server Entity Departure Aftribute Scope

Time-Based
Counter

Entity Generator
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Entity Departure Count with Reset att =5

40

Number of Entity Departures

0 ) 10 15 20
Time

Associating Each Entity with Its Index

Use the Entity Departure Counter block with Write count to attribute set
to On to associate an entity count with the entities that use a particular entity
path. The Nth entity departing from the Entity Departure Counter block
has an attribute value of N.

For an example, see “Example: Setting Attributes” on page 1-14.
For an example that illustrates when using the Entity Departure Counter
block is more straightforward than storing the #d output signal in an

attribute using the Set Attribute block, see “Example: Sequence of Departures
and Statistical Updates” on page 14-10.
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Combining Entities

1-24

e “Overview of the Entity-Combining Operation” on page 1-24

e “Example: Waiting to Combine Entities” on page 1-24

¢ “Example: Copying Timers When Combining Entities” on page 1-26
e “Example: Managing Data in Composite Entities” on page 1-27

Overview of the Entity-Combining Operation

You can combine entities from different paths using the Entity Combiner
block. The entities you combine, called component entities, might represent
different parts within a larger item, such as a header, payload, and trailer
that are parts of a packet.

The Entity Combiner block and its surrounding blocks automatically detect
when all necessary component entities are present and the result of the
combining operation would be able to advance to a storage block. “Example:
Waiting to Combine Entities” on page 1-24 illustrates these automatic
interactions among blocks.

The Entity Combiner block provides options for managing information
(attributes and timers) associated with the component entities, as illustrated
in “Example: Managing Data in Composite Entities” on page 1-27. You can
also configure the Entity Combiner block to make the combining operation
reversible via the Entity Splitter block.

For details about individual blocks, see the reference pages for the Entity
Combiner and Entity Splitter blocks.

Example: Waiting to Combine Entities

The model below illustrates the synchronization of entities’ advancement by
the Entity Combiner block and its preceding blocks.
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The combining operation proceeds when all of these conditions are
simultaneously true:

¢ The top queue has a pending entity.
¢ The middle queue has a pending entity.
¢ The bottom queue has a pending entity.

¢ The entity input port of the Entity Sink block is available, which is true
throughout the simulation.

The bottom entity generator has the largest intergeneration time among
the three entity generators, and is the limiting factor that determines when
the Entity Combiner block accepts one entity from each queue. The top and
middle queues store pending entities while waiting for the bottom entity
generator to generate its next entity.

If you change the uniform distribution in the middle entity generator to
produce intergeneration times between 0.5 and 3, then the bottom entity
generator is not consistently the slowest. Nevertheless, the Entity Combiner
block automatically permits the arrival of one entity from each queue as soon
as each queue has a pending entity.
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Create products

While you could alternatively synchronize the departures from the three
queues using appropriately configured gates, it is simpler and more intuitive
to use the Entity Combiner block as shown.

Example: Copying Timers When Combining Entities

The model below combines an entity representing a product with an entity
representing a box, thus creating an entity that represents a boxed product.
The Entity Combiner block copies the timer from the product to the boxed
product.

Create boxes
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& OUT poa|in oUT f—a{IN ouT Put one product o
: in -
in each box ’ ”
Time-Based Start Timer FIFC Queus EA NS w Sinnal ©
. +
Entity Generator s out psfin o ouT | 'gnal Scope
Mean arrival rate = 0.1

i ouT
ity © i Infinite Server Read Timer g
Entity Combiner wlin ©

| IN ouT

Time-Based

Entity Generator1
Wean arrival rate = 0.1

FIFC Queus1

The model plots the products’ average age, which is the sum of the time that
a product might wait for a box and the service time for boxed products in
the Infinite Server block. In this simulation, some products wait for boxes,
while some boxes wait for products. The generation of products and boxes are
random processes with the same exponential distribution, but different seeds
for the random number generator.

Entity Sink
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Average Age of Products
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Example: Managing Data in Composite Entities

This section illustrates the choice between access to a component entity’s
attributes in a composite entity and uniqueness of the attribute names across
all component entities.

Attribute Names Nonunique and Inaccessible in Composite
Entity

The model below combines component entities representing a header, payload,
and trailer into a composite entity representing a packet. Each component
entity has a Length attribute that the packet stores. When the Entity Splitter
block divides the packet into separate header, payload, and trailer entities,
each has the appropriate attribute. However, Length is not accessible in the
packet (that is, after combining and before splitting). If it were, the name
would be ambiguous because all component entities have an attribute by
that name.
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Atiribute Names Unique and Accessible in Composite Entity
The model below uniquely names all attributes of the components and makes
them accessible in the packet. If your primary focus is on data rather than the
entities that carry the data, then you can think of the Entity Combiner block
as aggregating data from different data sources.

The model illustrates these ways of accessing attributes via the composite
entity:

¢ Reading the lengths using the Get Attribute block.

¢ Changing the value of the Status attribute using the Set Attribute block.
The new value persists when the Entity Splitter block divides the packet
into its component entities.

¢ Defining a new attribute called PacketLength. This is an attribute of the
composite entity that is not associated with any of the component entities,
so it does not persist beyond the Entity Splitter block.
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Replicating Entities on Multiple Paths

You can distribute copies of an entity on multiple entity paths using the
Replicate block. Replicating entities might be a requirement of the situation
you are modeling or it might be merely a convenient modeling construct. One
scenario in which you might replicate entities is when copies of messages in
a multicasting communication system advance to multiple transmitters or
multiple recipients, as shown in the fragment below.

A1 ouT p—
+OuT1 Transmittar Subsystem 1

5| IN + +
é foutz
Replicate ol 1N ouT pa—

Transmitter Subsystam 2

Alternatively, copies of computer jobs might advance to multiple computers in
a cluster so that the jobs can be processed in parallel on different platforms.

Unlike the Output Switch block, the Replicate block has departures at all of
its entity output ports that are not blocked, not just a single selected entity
output port.

If your model routes the replicates such that they use a common entity path,
then be aware that blockages can occur during the replication process. For
example, connecting all ports of a Replicate block, Path Combiner block, and
Single Server block in that sequence can create a blockage because the server
can accommodate at most one of the replicates at a time. The blockage causes
fewer than the maximum number of replicates to depart from the block.

Departure Port Precedence

Each time the Replicate block replicates an entity, the copies depart in a
sequence whose start is determined by the Departure port precedence
parameter. Although all copies depart at the same time instant, the sequence
might be significant in some modeling situations. For details, see the
reference page for the Replicate block.
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Supported Events in SimEvents Models

An event is an instantaneous discrete incident that changes a state variable,
an output, and/or the occurrence of other events. This section lists the
supported events in SimEvents models and discusses some types of events in
greater detail. The topics are

* “Types of Supported Events” on page 2-2

® “Signal-Based Events” on page 2-3

¢ “Function Calls” on page 2-7

Types of Supported Events

SimEvents supports the events listed below.

Event Description

Sample time hit Update in the value of a signal that is connected
to a block configured to react to signal updates

Value change Change in the value of a signal connected to a
block that is configured to react to relevant value
changes

Trigger Rising or falling edge of a signal connected to

a block that is configured to react to relevant
trigger edges

Function call Discrete invocation request carried from block
to block by a special signal called a function-call
signal

Entity generation Creation of an entity

Entity destruction Arrival of an entity at a block that has no entity
output port

Entity advancement Departure of an entity from one block and arrival
at another block

Service completion Completion of service on an entity in a server

Preemption Replacement of an entity in a server by a higher

priority entity
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Event

Description

Timeout

Departure of an entity that has exceeded a
previously established time limit

Counter reset

Reinitialization of the counter in the Entity
Departure Counter block

Gate opening or closing

Change in the state of the gate represented by the
Enabled Gate or Release Gate block

Port selection

Selection of an entity input port in the Input
Switch block or an entity output port in the
Output Switch block

Memory writing

Writing of memory in the Signal Latch block

Memory reading

Reading of memory in the Signal Latch block

Signal-Based Events

Sample time hits, value changes, and triggers are collectively called
signal-based events. Signal-based events can occur with respect to time-based
or event-based signals. Signal-based events provide a mechanism for a block
to respond to selected state changes in a signal connected to the block. The
kind of state change to which the block responds determines the specific type
of signal-based event.

When comparing the types of signal-based events, note that

The updated value that results in a sample time hit could be the same as or
different from the previous value of the signal.

Event-based signals do not necessarily undergo an update at the beginning

of the simulation.

Every change in a signal value is also an update in that signal’s value.
However, the opposite is not true because an update that merely reconfirms
the same value is not a change in the value.

Every rising or falling edge is also a change in the value of the signal.
However, the opposite is not true because a change from one positive value
to another (or from one negative value to another) is not a rising or falling

edge.
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® Triggers and value changes can be rising or falling. You configure a block
to determine whether the block considers rising, falling, or either type
to be a relevant occurrence.

¢ Blocks in the Simulink libraries are more restrictive than blocks in the
SimEvents libraries regarding trigger edges that rise or fall from zero.
Simulink blocks in discrete-time systems do not consider a change from
zero to be a trigger edge unless the signal remained at zero for more than
one time step; see “Triggered Subsystems”. SimEvents blocks configured
with tr ports consider any change from zero to a nonzero number to be a
trigger edge.

Example: Comparing Types of Signal-Based Events

Consider the signal representing the number of entities stored in a FIFO
queue. This is the #n output signal from the FIFO Queue block in the model
below. The #n signal is connected to the Event-Based Entity Generator block,
which reacts to different types of signal-based events. Parameters in its dialog
box determine whether the block has a ts, ve, or tr input port, as well as the
types of events to which the block reacts.
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The following figures use a staircase plot to show the values of the #n signal,
starting from the first entity’s arrival at T=0. The figures use stem plots to
indicate when signal-based events occur at different signal input ports (ts, ve,
or tr) of the Event-Based Entity Generator block.
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#n = Number of Entities in Queue
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Function Calls

Function calls are discrete invocation requests carried from block to block by
a special signal called a function-call signal. A function-call signal appears

as a dashed line, not a solid line. A function-call signal carries a function
call at discrete times during the simulation and does not have a defined
value at other times. A function-call signal is capable of carrying multiple
function calls at the same value of the simulation clock, representing multiple
simultaneous events.

In SimEvents models, function calls are the recommended way to make
Stateflow blocks and blocks in the Simulink libraries respond to asynchronous
state changes.

Function calls and signal-based events are often interchangeable in
their ability to elicit reactions from various SimEvents blocks, such as
the Event-Based Entity Generator block and the Signal-Based Event to
Function-Call Event block.
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Function-call signals can be combined, as described in “Creating a Union of
Multiple Events” on page 2-47.
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Event Processing in SimEvents

During a simulation, multiple events can occur at the same value of the
simulation clock, whether or not due to causality. SimEvents maintains a list,
called the event calendar, of selected upcoming events that are scheduled

for the current simulation time or future times. This section indicates
which events appear on the event calendar and how the application handles
simultaneous events. The topics are

® “Role of the Event Calendar” on page 2-9

® “Processing Sequence for Simultaneous Events” on page 2-11

e “Livelock Detection” on page 2-12

For suggestions and examples related to event processing, see “Working
with Simultaneous Events” on page 2-14. To learn how to display event

information in the MATLAB Command Window, see “Viewing the Event
Calendar” on page 13-2.

Role of the Event Calendar

The table below indicates which events appear or might appear on the event
calendar. In some cases, you have a choice.
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Event On Event How to Cause Event to Appear on Event
Calendar Calendar

Sample time hit Never

Value change

Trigger

Function call Sometimes Select Resolve simultaneous signal
updates according to event priority, if
present, in the dialog box of the block that
generates the function call. If the dialog box
has no such option, then the function call is not
on the event calendar.

Entity generation Sometimes Use the Time-Based Entity Generator block,
or select Resolve simultaneous signal
updates according to event priority in the
Event-Based Entity Generator block’s dialog
box.

Entity destruction Never

Entity advancement Never

Service completion Always

Preemption Never

Timeout Always

Counter reset Sometimes Select Resolve simultaneous signal

. . dates according to event priority, if
1 up ’

Gate opening or closing present, in the block’s dialog box.

Port selection

Memory writing Sometimes Select Resolve simultaneous signal
updates according to event priority on the
Write tab of the block’s dialog box.

Memory reading Sometimes Select Resolve simultaneous signal

updates according to event priority on the
Read tab of the block’s dialog box.

If an event does not appear on the event calendar, then the application
arbitrarily decides when to process the event relative to other events occurring
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at the same value of the simulation clock that are also not on the event
calendar. When multiple unrelated events occur simultaneously, causality
considerations alone do not necessarily determine a unique correct sequence.

When you use blocks that offer a Resolve simultaneous signal updates
according to event priority option, your choice determines whether
particular events appear on the event calendar. For information about this
option, see “Understanding the Resolution Sequence for Input Signals” on
page 3-11. For issues you should consider when deciding whether to select this
option, see “Choosing an Approach for Simultaneous Events” on page 2-14.

Processing Sequence for Simultaneous Events

Even if simultaneous events occur at the same value of the simulation clock,
the application processes them sequentially. If one event causes another event
directly or indirectly, the processing sequence must reflect the causality. This
section describes the processing sequence for two simultaneous events in

the case when neither causes the other. Depending on the event types and
on how you have designed your model, the application might determine the
processing sequence

e Explicitly according to modeling choices you make. Simultaneous events
having distinct event priorities are processed in ascending order of the
event priority values. Events not on the event calendar are processed
before simultaneous events on the event calendar.

¢ Randomly, where your choice of a seed for the random number generator
provides repeatability.

® Arbitrarily, using an internal algorithm.

The figure below indicates when each kind of determination is in effect. The
figure assumes that two events, neither of which causes the other, occur at
the same value of the simulation clock. The abbreviation Execution order...
refers to the Execution order of simultaneous events parameter on the
SimEvents tab of the model’s Configuration Parameters dialog box. See
“Events with Equal Priorities” on page 2-16 for details.
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Two events occur Event not on the
at the same value event calendar
of time processed first

Are both events Is one event on No
on event calendar? event calendar? L
Arbitrary
processing
sequence
. ) A
Are theuj o Is Execution No
event priorities order... set to
distinct? Randomized?

Processed in
ascending order of
event priority values

Random
processing sequence

When the sequence is arbitrary, you should not make any assumptions about
the sequence or its repeatability.

For suggestions on how to use the information in the figure when creating
models, see “Choosing an Approach for Simultaneous Events” on page 2-14.

Livelock Detection

SimEvents includes features to detect livelock and other infinite loops.
Livelock is a situation in which an entity moves along a looped entity path
with no passage of time and no logic to stop the entity for a nonzero period
of time.

2-12



Event Processing in SimEvents

The model below shows an example of livelock. The livelock detection feature
causes the simulation to halt with an error message. Without this error
detection, an entity would move endlessly around the looped entity path

without the simulation clock advancing.

Livelock Causes Error During Simulation
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SimEvents also detects causality loops that involve recursion beyond a fixed
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Working with Simultaneous Events

Building on the descriptions in “Event Processing in SimEvents” on page 2-9,
this section provides modeling suggestions and examples. The topics are

“Choosing an Approach for Simultaneous Events” on page 2-14
“Setting Event Priorities” on page 2-15

“Example: Event Calendar for a Queue-Server Model” on page 2-17
“Example: Race Conditions at a Switch” on page 2-25

“Events On and Off the Event Calendar” on page 2-31

Choosing an Approach for Simultaneous Events

Building on the logic depicted in “Processing Sequence for Simultaneous
Events” on page 2-11, here are some examples of situations in which
you might want to use different modeling approaches for working with
simultaneous events and the event calendar:

You want the simulation to run as fast as possible and you know that the
specific processing sequence for unrelated simultaneous events has little
or no effect on your simulation results. In this case, you leave Resolve
simultaneous signal updates according to event priority parameters
at their default values.

You need to make a block react to relevant updates in its input signal
upon detecting the update, without necessarily waiting for other block
operations. In this case, you turn off the block’s Resolve simultaneous
signal updates according to event priority option.

You need to make a block defer the reaction to relevant updates in its input
signal until after other operations at that time have been processed. In
this case, you select the block’s Resolve simultaneous signal updates
according to event priority option. Upon detecting the update or change
in the block’s input signal, the application schedules an event on the event
calendar for the current simulation time.

For examples, see “Events On and Off the Event Calendar” on page 2-31.
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Note As a special case, consider a Stateflow chart having both a
function-call output and a signal output, connected to SimEvents blocks
that use the Stateflow outputs at the same time. Selecting Resolve
simultaneous signal updates according to event priority, if present,
in the SimEvents block that reacts to the function call might prevent
latency issues. To learn more about using SimEvents and Stateflow blocks
together in a model, see Chapter 12, “Using Stateflow with SimEvents”.

¢ Unrelated simultaneous events seem likely to occur and their sequence
can alter your simulation results. In this case, you select Resolve
simultaneous signal updates according to event priority in most or
all of the blocks involved in the collection of simultaneous events. Then use
event priorities as described in “Setting Event Priorities” on page 2-15 to
determine a sequence that meets your simulation needs. Simultaneous
events having distinct event priorities are processed in ascending order
of the event priority values.

For examples that show the effect of changing event priorities, see
“Example: Race Conditions at a Switch” on page 2-25 and the Event
Priorities demo.

Setting Event Priorities

If the event calendar contains two or more events that are scheduled for times
that are equal or sufficiently close, then you can assign event priorities to
influence the processing sequence of the events. Simultaneous events having
distinct event priorities are processed in ascending order of the event priority
values. To assign event priorities, use this procedure:

1 Find the block that produces the event you want to prioritize. For example,
it might be an entity generator, a server, a gate, a counter, or a switch.

2 If the block’s dialog box has an option called Resolve simultaneous
signal updates according to event priority, then select this option. A
parameter representing the event priority appears; in most blocks, the
parameter’s name is Event priority.

3 Set the event priority parameter to a positive integer. When choosing an
integer, remember that a particular value of event priority is not significant
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in isolation; what matters is the ordering in a set of event priorities for a
set of simultaneous events.

Events that are not on the event calendar have no event priority. Such events
are processed before unrelated events scheduled on the event calendar for the
same time. However, you cannot vary, or necessarily predict, the processing
sequence of multiple unrelated simultaneous events that are not on the event
calendar.

For examples that show the effect of changing event priorities, see “Example:
Race Conditions at a Switch” on page 2-25 and the Event Priorities demo.

Events with Equal Priorities

If simultaneous events on the event calendar have equal event priorities, then
the application arbitrarily or randomly determines the processing sequence,
depending on a modelwide configuration parameter. To access this parameter,
use this procedure:

1 Select Simulation > Configuration Parameters from the model window.
This opens the Configuration Parameters dialog box.

2 In the left pane, select SimEvents.

3 In the right pane, set Execution order of simultaneous events to either
Randomized or Arbitrary.

® Ifyou select Arbitrary, the application uses an internal algorithm to
determine the processing sequence for events on the event calendar that
have the same event priority and sufficiently close event times.

¢ If you select Randomized, the application randomly determines the
processing sequence. All possible sequences have equal probability. The
Seed for event randomization parameter is the initial seed of the
random number generator; for a given seed, the generator’s output is
repeatable.

The processing sequence might be different from the sequence in which the
events were scheduled on the event calendar.
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Example: Event Calendar for a Queue-Server Model

To see how the event calendar drives the simulation of a simple event-based
model, consider the queue-server model depicted below.

drpeslbicyites |Evvent-Based

Random Mumber

il \ .
=

Time-Based FIFO Queue Single Server
Entity Genearator

Entity Sink

Assume that the blocks are configured so that

¢ The Time-Based Entity Generator block generates an entity at T = 0.9, 1.7,
3.8, 3.9, and 6.

¢ The queue has infinite capacity.
¢ The server uses random service times that are uniformly distributed

between 0.5 and 2.5 seconds.

The sections below indicate how the event calendar and the system’s states
change during the simulation.

Start of Simulation

When the simulation starts, the queue and server are empty. The entity
generator schedules an event for T' = 0.9. The event calendar looks like the

table below.
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Time of | Type of Event

Event (s)

0.9 Time-Based Entity Generator block generates an entity.

Generation of First Entity
At T =0.9,

The entity generator generates an entity and attempts to output it.

The queue is empty, so the entity advances from the entity generator to
the queue.

The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. It queries the server to determine whether
the server can accept the entity.

The server is empty, so the entity advances from the queue to the server.

The server’s entity input port becomes temporarily unavailable to future
entities.

The server schedules an event that indicates when the entity’s service time
is completed. Suppose the (stochastic) service time turns out to be 1.3 in
this case. This means that the duration of service is 1.3 seconds, so service
is complete at T = 2.2.

The entity generator schedules its next entity-generation event, at T = 1.7.

In the schematic below, the circled notation “el” depicts the first entity and
the dashed arrow is meant to indicate that this entity advances from the
entity generator through the queue to the server.
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i |Event-Based

FRandom Mumber
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Entity Generator e =EnE Entity Sink
The event calendar looks like this.
Time of | Event Description
Event (s)
1.7 Time-Based Entity Generator block generates second entity.
2.2 Single Server block completes service on the first entity.

Generation of Second Entity
AtT=1.7,

¢ The entity generator generates an entity and attempts to output it.

® The queue is empty, so the entity advances from the entity generator to
the queue.

® The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. However, the server’s entity input port is
unavailable, so the entity stays in the queue. The queue’s entity output
port is said to be blocked because an entity has tried and failed to depart
via this port.

® The entity generator schedules its next entity-generation event, at T = 3.8.
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Time of
Event (s)

Event Description

2.2 Single Server block completes service on the first entity.

3.8 Time-Based Entity Generator block generates the third entity.

Completion of Service Time
At T =22,

The server finishes serving its entity and attempts to output it. The server
queries the next block to determine whether it can accept the entity.

The sink block accepts all entities by definition, so the entity advances
from the server to the sink.

The server’s entity input port becomes available.

The queue is now able to output the second entity to the server. As a result,
the queue becomes empty and the server becomes busy again.

The server’s entity input port becomes temporarily unavailable to future
entities.

The server schedules an event that indicates when the second entity’s
service time is completed. Suppose the service time turns out to be 2.0
in this case.
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Note The server’s entity input port started this time instant in the
unavailable state, became available (when the first entity departed from the
server), and then became unavailable once again (when the second entity
arrived at the server). It is not uncommon for a state to change more than
once in the same time instant.

et |Event Based

Fandom Mumber

iy, ouT | IN |:||.|T79—|_’z ouT N

Time-Bazed FIFO Queue Single Senver —
Entity Generator Entity Sink

Time of | Event Description
Event (s)

3.8 Time-Based Entity Generator block generates the third entity.

4.2 Single Server block completes service on the second entity.

Generation of Third Entity
At T = 3.8,

¢ The entity generator generates an entity and attempts to output it.

¢ The queue is empty, so the entity advances from the entity generator to
the queue.

¢ The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. However, the server’s entity input port is
unavailable, so the entity stays in the queue.
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® The entity generator schedules its next entity-generation event, at T = 3.9.

i |Event-Based

Fandom Humber

"-ii._.J':'UT ) 1M I:ILIT»—|_) auT BN i

Time-Based FIFO Queue Single Sanrer —
Entity Genaratar Entity Sink

Time of | Event Description
Event (s)

3.9 Time-Based Entity Generator block generates the fourth entity.

4.2 Single Server block completes service on the second entity.

Generation of Fourth Entity
At T = 3.9,

¢ The entity generator generates an entity and attempts to output it.

® The queue is not full, so the entity advances from the entity generator
to the queue.

® The server’s entity input port is still unavailable, so the queue cannot
output an entity. The queue length is currently two.

® The entity generator schedules its next entity-generation event, at T = 6.
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Event-Based
Random Number
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Entity Generator

Time of | Event Description

Event (s)

4.2 Single Server block completes service on the second entity.

6 Time-Based Entity Generator block generates the fifth entity.

Completion of Service Time
At T =42,

® The server finishes serving its entity and attempts to output it.

® The sink block accepts all entities by definition, so the entity advances
from the server to the sink.

® The server’s entity input port becomes available, so the queue’s entity
output port becomes unblocked. The queue is now able to output the third
entity to the server. As a result, the queue length becomes one, and the
server becomes busy.

® The server’s entity input port becomes temporarily unavailable to future
entities.

® The server schedules an event that indicates when the entity’s service time
is completed. Suppose the service time turns out to be 0.7 in this case.
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¢ The queue attempts to output the fourth entity. However, the server’s
entity input port is unavailable, so this entity stays in the queue. The
queue’s entity output port becomes blocked.

Note The queue’s entity output port started this time instant in the blocked
state, became unblocked (when it sensed that the server’s entity input port
became available), and then became blocked once again (when the server
began serving the third entity).

i |Event-Based

Fandom Humber

@y 0uT 2|IH ouT ouT =N il

Time-Based FIFO Queue Single Server

Entity Generator Entity Sink
Time of | Event Description
Event (s)
4.9 Single Server block completes service on the third entity.
6 Time-Based Entity Generator block generates the fifth entity
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Example: Race Conditions at a Switch

This example shows how you can vary the processing sequence for
simultaneous events by varying their event priorities.

Repeating
Sequence

Stair
L
= in ﬁ
t ; Signal Scope
Haw) t= @ OUT B=s|IN (| OUT p— Source_attr
== 01
- i Al . -
EwentBaszed Set Attribute N + . + Dizcrate Event Signal
1M1 f_/ +0UT IM 1 to Workspace
Entity Ganarator! Source =1 alne 2] -
, I Input Switeh Get Attribute -
Hie{ t= ﬁ:l“lDUTﬁ—‘QlN i1 OUT p— | IN e
EventBazed Set Attribute 2 Aftribute Scope
Entity Generator2 Source =2

At T=1, 2, 3,... Repeating Sequence Stair block changes its value from 1 to 2
or vice versa. The change causes the following events to occur, not necessarily
in this sequence:

¢ The top entity generator generates an entity.

¢ The bottom entity generator generates an entity.

¢ The Input Switch block selects a different entity input port.

Both entity generators are configured so that if a generated entity cannot

depart immediately, the generator holds the entity and temporarily suspends
the generation of additional entities.

In the model, the two Set Attribute blocks assign a Source attribute to each
entity, where the attribute value is 1 or 2 depending on which entity generator
generated the entity. The Attribute Scope block plots the Source attribute
values to indicate the source of each entity that departs from the switch.
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Arbitrary Resolution of Signal Updates

If the two entity generators and the switch all have the Resolve
simultaneous signal updates according to event priority option turned
off, then you cannot predict the sequence in which the blocks react to changes
in the output signal from the Repeating Sequence Stair block. The rest of
this example assumes that the two entity generators and the switch all use
the Resolve simultaneous signal updates according to event priority
option, for greater control over the sequencing of simultaneous events.

Selecting a Port First

Suppose the model is configured so that the two entity generators and the
switch have the explicit event priorities shown below.

Event Type Event Priority
Generation event at top entity generator 300
Generation event at bottom entity generator 310
Port selection event at switch 200

At T=1,

1 The switch selects its IN2 entity input port.

2 The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

3 The bottom entity generator generates an entity, which advances from
block to block until it reaches the Attribute Scope block.
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At T=2,

1 The switch selects its IN1 entity input port. This causes the top entity
generator to output the entity it generated 1 second ago. This entity
advances from block to block until it reaches the Attribute Scope block.

2 The top entity generator generates an entity, which advances from block to
block until it reaches the Attribute Scope block. A total of two entities from
the top entity generator reach the scope at this time instant.

3 The bottom entity generator generates an entity, which cannot depart
because the switch’s IN2 entity input port is unavailable.

At T=3,

1 The switch selects its IN2 entity input port. This causes the bottom entity
generator to output the entity it generated 1 second ago. This entity
advances from block to block until it reaches the Attribute Scope block.

2 The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

3 The bottom entity generator generates an entity, which advances from block
to block until it reaches the Attribute Scope block. A total of two entities
from the bottom entity generator reach the scope at this time instant.

The plot of entities’ Source attribute values shows an alternating pattern of
dots, as does the plot of the port selection signal p. The list of times and
values of the entities’ Source attribute, as recorded in the Source_attr
variable in the MATLAB workspace, shows that two entities from the same
entity generator reach the scope at T=2, 3, 4, etc.
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Port Selection Signal
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Generating Entities First
Suppose the model is configured so that the two entity generators and the
switch have the explicit event priorities shown below.

Event Type Event Priority
Generation event at top entity generator 300
Generation event at bottom entity generator 310

Port selection event at switch 4000

At the beginning of the simulation, the port selection signal p is 1.

At T=1,

1 The top entity generator generates an entity, which advances from block to
block until it reaches the Attribute Scope block.

2 The bottom entity generator generates an entity, which cannot depart
because the switch’s IN2 entity input port is unavailable.

3 The switch selects its IN2 entity input port. This causes the bottom entity
generator to output the entity it just generated. This entity advances from
block to block until it reaches the Attribute Scope block.

At T=2,

1 The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

2 The bottom entity generator generates an entity, which advances from
block to block until it reaches the Attribute Scope block.

3 The switch selects its IN1 entity input port. This causes the top entity
generator to output the entity it just generated. This entity advances from
block to block until it reaches the Attribute Scope block.

The plot of entities’ Source attribute values shows that two entities from
different entity generators depart from the switch every second.
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Randomly Selecting a Sequence

Suppose the model is configured so that the two entity generators and
the switch have equal event priorities. By default, the application uses
an arbitrary processing sequence for the entity-generation events and
the port-selection events, which might or might not be appropriate in
an application. To avoid bias by randomly determining the processing
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sequence for these events, set Execution order of simultaneous events to
Randomized in the model’s Configuration Parameters dialog box.

Sample attribute values and the corresponding plot are below, but your results
might vary depending on the specific random numbers.

Source of Entities Departing from Switch
2 F
) LT LI LI LT
0 2 4 6 8 10
Time

Source

Switch Departures When Processing Sequence is Random

[Source_attr.time, Source_attr.signals.values]
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Events On and Off the Event Calendar

This section presents these examples to illustrate when the decision to put an
event on the event calendar — that is, your decision regarding the Resolve
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simultaneous signal updates according to event priority option —
affects the simulation significantly:

¢ “Example: Queue Thresholds” on page 2-32

¢ “Example: Simultaneous Events in Aggregation Demo” on page 2-34

Another relevant example is “Example: Using the Event Calendar to Prevent
Interleaving” on page 14-14.

Example: Queue Thresholds

The example below illustrates how deferring the reaction to a signal update
until after other simultaneous block operations have been considered can
change the way a gate lets entities out of a queue.

Not On Event Calendar

J—p Din Dout
#n Discrete EVE:L &n

=1 kS Subsystem X W
:11,_:_} OUT pa—2| IN i : _'DUT B 1N ﬁ
ouT =1
Time-Based FIFO Quevue Enabled Gate Instantanecus Entity
Entity Generator Counting Scope
On Event Calendar
J—b Din Dout
#n Disorete EVE:L en m
=1 kS Subsystem1 X
:11,_:_} OUT pa—2| IN 3] : _'DUT B 1N ﬁ
ouT =1 +
Time-Based FIFO Queusi Enabled Gatel Instantanecus Entity
Entity Generatori Counting Scope

In the top row of blocks, the subsystem contains a Discrete Event Inport block
with the Resolve simultaneous signal updates according to event
priority option not selected. In the bottom row of blocks, the subsystem
contains a Discrete Event Inport block with the Resolve simultaneous
signal updates according to event priority option selected. In both cases,
the subsystem returns 1 when the queue length is greater than or equal to

5. During the simulation, each queue accumulates entities until it updates
the queue length signal, #n, to 5. At that point, the behaviors of the two
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portions of the model diverge because the top portion of the model reevaluates
the threshold condition as soon as it detects the change in #n, while the
bottom portion of the model schedules an event to reevaluate the threshold
condition. The sequences of relevant operations in the two portions of the
model are as follows:

Operations in Top Portion of Model
1 The #n signal becomes 5.

2 The subsystem executes immediately and finds that the queue length is
at the threshold.

3 The gate opens.
4 One entity departs from the queue.
5 The queue length decreases.

6 The subsystem executes immediately and finds that the queue length is
beneath the threshold.

7 The gate closes.

Operations in Bottom Portion of Model
1 The #n signal becomes 5.
2 The subsystem schedules an execution event for the current time.

3 The event calendar causes the subsystem to execute. The subsystem finds
that the queue length is at the threshold.

4 The gate opens.

5 One entity departs from the queue.

6 The queue length decreases.

7 The subsystem schedules an execution event for the current time.

8 Steps One entity departs from the queue.
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on page 33 through The subsystem schedules an execution event for the
current time.

on page 33 repeat until the queue is empty. The gate remains open
during this period. This step shows the difference in simulation behavior
between scheduling the execution event and processing it immediately
upon detecting the decrease in queue length.

9 The event calendar causes the subsystem to execute. The subsystem finds
that the queue length is beneath the threshold.

10 The gate closes.

11 The event calendar causes the subsystem to execute additional times, but
the subsystem output is the same.

In summary, when the queue length reaches the threshold, the top portion

of the model releases one entity so that the queue length is just beneath the
threshold, while the bottom portion of the model empties the queue. The plots
of departures from the gates reflect this behavior.

Computations Mot on Event Calendar
T e RS

. Pttt
5 10

Mumber of Entities

Time

Computations on Event Calendar

i

0 5 10
Time

Number of Entities

Example: Simultaneous Events in Aggregation Demo

The Aggregation: Assembling a Vehicle Chassis demo illustrates why the
event calendar can be useful for deferring the processing of an event until
other operations at that time have completed their processing. The next figure
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shows some events in the model that simultaneously cause other events. A
rising edge of the Doutl signal causes four simultaneous events, three of
which are release events that in turn cause a simultaneous recomputation of
Doutl.

Compute Doutl

If Doutl has a -
rising edge, then...

_ Transmission Testing server
"~ releases a transmission

— Recompute Doutl—

. Engine Testing server

= ; —— > Recompute Doutl—
releases an engine

. Frame Testing server
releases a frame

—— > Recompute Doutl -

. Chassis Generator subsystem
generates a chassis

It is important to defer the recomputation of Doutl until after the three
release events are complete, or else a recomputation of Doutl might eliminate
the rising edge and prevent the processing of one of the release events.

To defer the recomputation of Doutl until after the three release events

are complete, the model puts the subsystem execution event on the event
calendar while keeping the release events off the event calendar. Specifically,
the model selects the Resolve simultaneous signal updates according to
event priority option in the Din, Dinl, and Din2 blocks within the Chassis
Assembly Control subsystem and does not select the Resolve simultaneous
signal updates according to event priority option in the Release Frame,
Release Engine, and Release Transmission blocks. As a result, whenever

a testing server changes its output signal, the Chassis Assembly Control
schedules the computation of Doutl on the event calendar (for the current
time instant) instead of proceeding immediately with the computation.
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e “Example: Observing Service Completions” on page 2-38

e “Example: Detecting Collisions by Comparing Events” on page 2-40

The event logging feature described in “Viewing the Event Calendar” on page
13-2 can help you observe events that appear on the event calendar. The table
below suggests some ways to observe events that do not appear on the event
calendar. Key tools are the Instantaneous Event Counting Scope block, Signal
Scope block, and Discrete Event Signal to Workspace block. You can also
build a discrete event subsystem that counts events and creates a signal, as
illustrated in “Example: Focusing on Events, Not Values” on page 9-23.

Note Do not select Resolve simultaneous signal updates according to
event priority options in block dialog boxes for the sole purpose of using the
event logging feature to observe those events. When you have a choice about
whether an event appears on the event calendar, your decision might affect
the processing sequence of simultaneous events and hence the simulation
behavior.

Event Observation Technique

Sample time hit | Use a branch line to connect the signal to an
Instantaneous Event Counting Scope block.

Value change

Trigger

Function call If the block issuing the function call provides a #f1
output signal, then observe its increases. Otherwise,
configure a Signal-Based Function-Call Event Generator
block by enabling the #f1 output port and setting
Generate function call only upon to Function call
from port fcn;then insert this block between the block
issuing the function call and the block reacting to the
function call.
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Event Observation Technique

Entity Observe values of the entity generator’s pe output

generation signal. Upon an entity generation, pe repeats a previous
value of 0 (if the generated entity departs immediately)
or increases from 0 to 1 (if the entity cannot depart).

Entity Observe increases in the #a output signal. The

destruction Instantaneous Entity Counting Scope block provides a
plot in place of a #a signal.

Entity Observe increases in the #d output signal of the block

advancement from which the entity departs. Alternatively, use the
entity logging feature described in “Viewing Entity
Locations” on page 13-9.

Service Observe values of the server’s #pe (or pe in the case of

completion the Single Server block) output signal. Upon a service
completion, the signal repeats a previous value of 0
(if the entity departs immediately) or increases (if the
entity cannot depart). Because simultaneous repeated
values would not be easy to observe on a plot, it is best
to observe the signal value in the MATLAB workspace if
a departure and a new service completion might occur
simultaneously in your model.

Preemption Observe increases in the #p output signal of the server
block.

Timeout Observe increases in the #to output signal of the storage

block from which the entity times out.

Counter reset

Observe falling edges in the counter block’s #d output

signal. Alternatively, use a branch line to connect the

counter block’s input signal to an Instantaneous Event
Counting Scope block.

Gate opening or
closing

Use a branch line to connect the gate block’s input signal
to an Instantaneous Event Counting Scope block. In the
case of an enabled gate, rising trigger edges of the input
signal indicate gate-opening events, while falling trigger
edges of the input signal indicate gate-closing events.
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Event Observation Technique

Port selection If the block has a p input signal, use a branch line

to connect the p signal to an Instantaneous Event
Counting Scope block, configured to plot value changes.
Otherwise, observe the block’s last output signal.

Memory writing | Observe sample time hits in the Signal Latch block’s
mem output signal.

Memory reading | Observe sample time hits in the Signal Latch block’s
out output signal.

For examples that use one or more of these techniques, see

e “Example: Plotting Event Counts to Check for Simultaneity” on page 10-14
e “Example: Entity Logging” on page 13-10

e “Example: Observing Service Completions” on page 2-38

e “Example: Focusing on Events, Not Values” on page 9-23

Also, “Example: Detecting Collisions by Comparing Events” on page 2-40

shows how to use a Signal Latch block to observe which of two types of events
occurred more recently.

Example: Observing Service Completions

The example below writes an N-Server block’s #pe signal to a structure called
pe in the MATLAB workspace. In the structure, pe.time indicates when each
value is attained and pe.signals.values indicates the corresponding value.
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An entity completes its service at precisely those times when the #pe signal
repeats its previous value or increases to a larger value. After the simulation
is over, you can form a vector of service completion times using the code below.

% Output #pe times and values.
pe_matrix = [pe.time, pe.signals.values]

% Determine when #pe changes its value.
dpe = [0; diff(pe.signals.values)];

% Service completions occur when #pe does not decrease.
t_svcp = pe.time(dpe >= 0)

Sample output, which depends on the entity generation, service completion,
gate opening, and gate closing times in the model, is below. Notice the rows of
pe_matrix in which the first column is 2.0000 and the second column has
decreasing values. These correspond to decreases in the #pe signal value at
T=2, which result from departures of entities that previously completed their
service. The value T=2 does not appear in the t_svcp vector because this is
not a time at which service completion events occur.

pe_matrix =

0.9077 1.0000
1.0849 2.0000
1.8895 3.0000
2.0000 2.0000
2.0000 1.0000
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Example: Detecting Collisions by Comparing Events

The example below aims to determine whether an entity is the only entity in
an infinite server for the entire duration of service. The model uses the Signal
Latch block to compare the times of two kinds of events and report which kind
occurred more recently. This usage of the Signal Latch block relies on the
block’s status output signal, st, rather than the default in and out ports.
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In the model, entities arrive at an infinite server, whose #n output signal
indicates how many entities are in the server. The Signal Latch block

responds to these signal-based events involving the integer-valued #n signal:
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e If #n increases from 0 to a larger integer, then

= rtr has a rising edge.

= The Signal Latch block processes a read event.

= The Signal Latch block’s st output signal becomes 0.
¢ If #n increases from 1 to a larger integer, then

= wtr has a rising edge.

= The Signal Latch block processes a write event.

= The Signal Latch block’s st output signal becomes 1.

e If #n increases from 0 to 2 at the same value of the simulation clock, then it
also assumes the value 1 as a zero-duration value. As a result,

= rtr and wtr both have rising edges, in that sequence.

= The Signal Latch block processes a read event followed by a write event.

= The Signal Latch block’s st output signal becomes 1.
By the time the entity departs from the Infinite Server block, the Signal Latch
block’s st signal is 0 if and only if that entity has been the only entity in the
server block for the entire duration of service. This outcome is considered a

success for that entity. Other outcomes are considered collisions between that
entity and one or more other entities.

This example is similar to the CSMA/CD subsystem in the “Ethernet Local
Area Network” demo.
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Generating Function-Call Events
You can generate an event and use it to

¢ Invoke a discrete event subsystem or a Stateflow block

e Cause certain events, such as the opening of a gate or the reading of
memory in a Signal Latch block

® Generate an entity

For most purposes, a function call is an appropriate type of event to generate.

Note While you can invoke triggered subsystems and Stateflow blocks upon
trigger edges, this method has limitations in discrete-event simulations.

In particular, you should use function calls instead of trigger edges if you
want the invocations to occur asynchronously, to be prioritized among other
simultaneous events, or to occur more than once in a fixed time instant.

These topics describe how to generate function calls in an event-based or
time-based manner:
¢ “Generating Events When Other Events Occur” on page 2-43

® “Generating Events Using Intergeneration Times” on page 2-45

Generating Events When Other Events Occur

The table below indicates which blocks generate function calls when other
events occur.

Event Upon Which to Block

Generate Another Event

Entity advancement Entity-Based Function-Call Event Generator
Signal-based event Signal-Based Function-Call Event Generator
Function call Signal-Based Function-Call Event Generator
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Example: Calling a Stateflow Block Upon Changes in Server
Contents

The fragment below, which is part of an example in “Using Stateflow to
Implement a Failure State” on page 4-16, uses entities to represent failures
and repairs of a server elsewhere in the model:

e A failure of the server is modeled as an entity’s arrival at the block labeled
Repair Work. When the Repair Work block’s #n signal increases to reflect
the entity arrival, the Signal-Based Function-Call Event Generator block
generates a function call that calls the Stateflow block to change the state
of the server from up to down.

® A completed repair of the server is modeled as an entity’s departure from
the Repair Work block. When the Repair Work block’s #n signal decreases
to reflect the entity departure, the Signal-Based Function-Call Event
Generator block generates a function call that calls the Stateflow block to
change the state of the server from down to up.

[Detect Either Type of

Entities representing failure and Change in Yalue] £ nitial
P P P 1 nitia
repair of server in gqueuing system F —JJFL Condition
we oo 4 1 =1
[Curation of 4
failure] [Repair Signal-Based
[Dzcurrence of Ly i, Wiiark] Function-Call
failure] Ewent Generatar
Ewvent-Based t 1 #n
Q_!LL;,C'UT Random Number N ouT | IN-i
Single Senverl Entity Sink
Time-Based Chart

Entity Generatord

One reason to use function calls rather than trigger signals to call a Stateflow
block in discrete-event simulations is that an event-based signal can
experience a trigger edge due to a zero-duration value that a time-based block
would not recognize. The Signal-Based Function-Call Event Generator can
detect signal-based events that involve zero-duration values.
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Generating Events Using Intergeneration Times

To generate events using intergeneration times from a signal or a statistical

distribution, use this procedure:

1 Use the signal or statistical distribution with the Time-Based Entity

Generator block to generate entities.

2 Use the Entity-Based Function-Call Event Generator block to generate an

event associated with each entity.

3 Terminate the entity path with an Entity Sink block.

In the special case when the intergeneration time is constant, a simpler
alternative is to use the Function-Call Generator block in the Simulink Ports

& Subsystems library.

Example: Opening a Gate Upon Random Events

The example below uses the top entity generator to generate entities whose
sole purpose is to cause the generation of events with intergeneration times
from a statistical distribution. The bottom entity generator generates entities

that enter a gated queuing system.

Generating Events with Random Intergeneration Times
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Manipulating Events

“Blocks for Manipulating Events” on page 2-47
“Creating a Union of Multiple Events” on page 2-47
“Translating Events to Control the Processing Sequence” on page 2-50

“Conditionalizing Events” on page 2-52

You can manipulate an event to accomplish any of these goals:

To invoke a function-call subsystem or Stateflow block upon entity
departures or signal-based events.

Note You can invoke triggered subsystems and Stateflow blocks upon
trigger edges, which are a type of signal-based event. However, you
will need to translate the trigger edges into function calls if you want
the invocations to occur asynchronously, to be prioritized among other
simultaneous events, or to occur more than once in a fixed time instant.

To create a union of events from multiple sources. See “Creating a Union
of Multiple Events” on page 2-47.

To prioritize the reaction to an event relative to simultaneous events. See
“Translating Events to Control the Processing Sequence” on page 2-50.

To delay the reaction to an event. See the Function-call time delay
parameter on the Signal-Based Event to Function-Call Event block’s
reference page.

To conditionalize the reaction to an event. See “Conditionalizing Events”
on page 2-52.

The term event translation refers to the conversion of one event into another.
The result of the translation is often a function call, but can be another type
of event. The result of the translation can occur at the same time as, or a
later time than, the original event.
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Blocks for Manipulating Events
The table below lists blocks that are useful for manipulating events.

Event to Block
Manipulate

Entity advancement | Entity Departure Event to Function-Call Event

Signal-based event Signal-Based Event to Function-Call Event

Function call Signal-Based Event to Function-Call Event

Mux

If you connect the Entity Departure Counter block’s #d output port to a block
that detects sample time hits or rising value changes, then you can view the
counter as a mechanism for converting an entity advancement event into a
signal-based event. Corresponding to each entity departure from the block is
an increase in the value of the #d signal.

Creating a Union of Multiple Events

To generate a function-call signal that represents the union (logical OR) of
multiple events, use this procedure:

1 Generate a function call for each event that is not already a function call.
Use blocks in the Event Generators or Event Translation library.

2 Use the Mux block to combine the function-call signals.

The multiplexed signal carries a function call when any of the individual
function-call signals carries a function call. If two individual signals carry a
function call at the same time instant, then the multiplexed signal carries two
function calls at that time instant.

Examples are in “Example: Performing a Computation on Selected Entity
Paths” on page 9-32 and below.
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Example: Counting Events from Multiple Sources

The example below illustrates different approaches to event translation and
event generation. This example varies the approach for illustrative purposes;
in your own models, you might decide to use a single approach that you find
most intuitive.

The goal of the example is to plot the number of arrivals at a bank of three
servers at each value of time. Entities advance to the servers via one or

two FIFO Queue blocks. To count arrivals and create the plot, the model
translates each arrival at a server into a function call; the Mux block combines
the three function-call signals to create an input to the Instantaneous Event
Counting Scope block.

The three server paths use these methods for translating an entity arrival
into a function call:

¢ One path uses the Entity Departure Event to Function-Call Event block,
treating the problem as one of event translation.

¢ One path uses the Entity-Based Event Generator block, treating the
problem as one of event generation. This is similar to the approach above.

® One path uses the Signal-Based Event to Function-Call Event block to
translate an increase in the value of the server block’s #n signal into a
function call. This approach uses the fact that each arrival at the server
block causes a simultaneous increase in the block’s #n signal.
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Example: Executing a Subsystem Based on Multiple Types of
Events

You can configure a Discrete Event Subsystem block to detect signal-based
events from one or more sources, and you can configure a Function-Call
Subsystem block to detect function calls from one or more sources. Using an
event translation block to convert a signal-based event into a function call,
the fragment below effectively creates a subsystem that detects a function
call from a Stateflow block and a signal-based event from another source.
The subsystem is executed when either the Stateflow block generates a
function call or the signal connected to the ve port of the Signal-Based Event
to Function-Call Event block changes. If both events occur simultaneously,
then the subsystem executes twice.

“Block execution” in this documentation is shorthand for “block methods
execution.” Methods are functions that Simulink uses to solve a model. Blocks
are made up of multiple methods. For details, see “Block Methods” in the
Simulink documentation.

—{uc fo 1 function()
In1
Signal-Based Event to
Function-Call Event Function-Call
Subsystem

Another similar example is in “Example: Performing a Computation on
Selected Entity Paths” on page 9-32.

Translating Events to Control the Processing Sequence

In some situations, event translation blocks can help you prescribe the
processing sequence for simultaneous events. The examples below illustrate
how to do this by taking advantage of the sequence in which an event
translation block issues two function calls, and by converting an unprioritized
function call into a function call having an event priority.
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Example: Issuing Two Function Calls in Sequence

In the model below, entity generation and the execution of a function-call
subsystem can occur simultaneously. At such times, it is important that

the entity generation occur first, so that the entity generator updates the
value of the w signal before the function-call subsystem uses w in its
computation. This model ensures a correct processing sequence by using the
same Signal-Based Event to Function-Call Event block to issue both function
calls and by relying on the fact that the block always issues the f1 function
call before the f2 function call.

funetion()
it i1 Outl! p—
evant() ol pfon @,
L fon —mfon — £ “aout Function-Call
z— Subsystem
i EventBased et
Chatt Signal-Based Ewent to Entity Generator

Function-Call Ewvent

Example: Generating a Function Call with an Event Priority
The model below uses an event translation block to prioritize the execution
of a function-call subsystem correctly on the event calendar, relative to a
simultaneous event. In the model, a Stateflow block and an entity generator
respond to edges of the same trigger signal. The Stateflow block calls an
event translation block, which in turn calls a function-call subsystem. The
subsystem performs a computation using the w output signal from the entity
generator.
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As in the earlier example, it is important that the entity generator update
the value of the w signal before the function-call subsystem uses w in its
computation. To ensure a correct processing sequence, the Signal-Based
Event to Function-Call Event block replaces the original function call, which
is not on the event calendar, with a new function call that appears on the
event calendar with a priority of 200. The Event-Based Entity Generator
block creates an entity-generation event on the event calendar with a priority
of 100. As a result of the event translation and the relative event priorities,
the entity generator generates the entity before the event translator issues
the function call to the function-call subsystem whenever these events occur
at the same value (or sufficiently close values) of the simulation clock.

Conditionalizing Events

The Entity Departure Event to Function-Call Event and Signal-Based Event
to Function-Call Event blocks provide a way to suppress the output function
call based on a control signal. If the control signal is zero or negative when
the block is about to issue the function call, then the block suppresses the
function call. You can use this feature to

¢ Prevent simulation problems. The example in “Example: Detecting
Changes in the Last-Updated Signal” on page 3-18 uses conditional
function calls to prevent division-by-zero warnings.

® Model an inoperative state of a component of your system. See the next
example.
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Example: Modeling Periodic Shutdown of an Entity Generator

The example below uses Event-Based Entity Generator blocks to generate
entities when a pulse signal changes its value. The top entity generator
generates an entity upon each such event. The bottom entity generator
responds to a function call issued by an event translation block that detects
changes in the pulse signal’s value. However, the event translation block
issues a function call only upon value changes that occur while the el
input signal is positive. In this model, a nonpositive value of the el signal
corresponds to a failure or resting period of the entity generator.
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Role of Event-Based Signals in
SimEvents Models (p. 3-2)

Generating Random Signals (p. 3-4)

Using Data Sets to Create
Event-Based Signals (p. 3-9)

Understanding the Resolution
Sequence for Input Signals (p. 3-11)

Choosing How to Resolve
Simultaneous Signal Updates
(p. 3-17)

Update Sequence for Output Signals
(p. 3-18)

Multiple Simultaneous Updates of
an Output Signal (p. 3-21)

Latency in Signal Updates (p. 3-25)

Manipulating Signals (p. 3-27)

Sending Data to the MATLAB
Workspace (p. 3-31)

Overview of event-based signals and
issues involving them

Producing random numbers in an
event-based or time-based manner

Generating event-based signals
using sequences of data you provide

How the application resolves updates
in input signals, especially when
simultaneous with other operations

Links to information that can help
you use the resolution options
effectively

Signal updates relative to each other

Working with zero-duration values

Delays in signal updates or responses
to updates

Using the Signal Latch block to
delay or resample signals

Collecting data from event-based
signals for manipulation in MATLAB
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Role of Event-Based Signals in SimEvents Models

Discrete-event simulations often involve signals that change when events
occur; for example, the number of entities in a server is a statistical output
signal from a server block and the signal value changes when an entity arrives
at or departs from the server. An event-based signal is a signal that can
change in response to discrete events. Most output signals from SimEvents
blocks are event-based signals.

Comparison with Time-Based Signals
Unlike time-based signals, event-based signals

® Do not have a true sample time. (These are not continuous signals, even
though the sample time coloration feature makes the signal connection line
black or gray, and a Probe block reports a sample time of zero.)

® Might be updated at time instants that do not correspond to time steps
determined by time-based dynamics.

® Might undergo multiple updates in a single time instant.

For example, consider a signal representing the number of entities in a server.
Computing this value at fixed intervals is wasteful if no entities arrive or
depart for long periods. Computing the value at fixed intervals is inaccurate if
entities arrive or depart in the middle of an interval, because the computation
misses those events. Simultaneous events can make the signal multivalued;
for example, if an entity completes its service and departs, which permits
another entity to arrive at the same time instant, then the count at that time
equals both 0 and 1 at that time instant. Furthermore, if an updated value
of the count signal causes an event, then the processing of the signal update
relative to other operations at that time instant can affect the processing
sequence of simultaneous events and change the behavior of the simulation.

When you use output signals from SimEvents blocks to examine the detailed
behavior of your system, you should understand when the blocks update the
signals, including the possibility of multiple simultaneous updates. When
you use event-based signals for controlling the dynamics of the simulation,
understanding when blocks update the signals and when other blocks react to
the updated values is even more important.
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Note Blocks in the SimEvents libraries process signals whose data type is
double. To convert between data types, use the Data Type Conversion block
in the Simulink Signal Attributes library.
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Generating Random Signals

Discrete-event simulations often use random numbers for entity
intergeneration times, service times, routing, and other purposes. An
important block for generating random signals is the Event-Based Random
Number block. These topics describe how to use this block to produce random
signals:

® “Generating Random Event-Based Signals” on page 3-4
e “Examples of Random Event-Based Signals” on page 3-5

® “Generating Random Time-Based Signals” on page 3-6

Generating Random Event-Based Signals

The Event-Based Random Number block is designed to create event-based
signals using a variety of distributions. The block generates a new random
number from the distribution upon notifications from a port of a subsequent
block. For example, when connected to the t input port of a Single Server
block, the Event-Based Random Number block generates a new random
number each time it receives notification that an entity has arrived at the
server. The t input port of a Single Server block is an example of a notifying
port; for a complete list, see “Notifying Ports” on page 14-4. You must connect
the Event-Based Random Number block to exactly one notifying port, which
then tells the block when to generate a new output value.

For details on the connectivity restrictions of the Event-Based Random
Number block, see its reference page.

Generating Random Signals Based on Arbitrary Events

A flexible way to generate random event-based signals is to use the Signal
Latch block to indicate explicitly which events cause the Event-Based Random
Number block to generate a new random number. Use this procedure:

1 Insert an Event-Based Random Number block into your model and
configure it to indicate the distribution and parameters you want to use.

2 Insert a Signal Latch block and set Read from memory upon to Write
to memory event. The block no longer has an rve signal input port.
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3 Determine which events should result in the generation of a new random
number, and set the Signal Latch block’s Write to memory upon
accordingly.

4 Connect the signal whose events you identified in the previous step to
the write-event port (wts, wve, wtr, or wfen) of the Signal Latch block.
Connect the Event-Based Random Number block to the in port of the
Signal Latch block.

The out port of the Signal Latch block is the desired random event-based
signal.

Examples of Random Event-Based Signals
Here are some examples using the Event-Based Random Number block:

e “Example: Using an Arbitrary Discrete Distribution as Intergeneration
Time” in the getting started documentation
o “Example: A Packet Switch” in the getting started documentation

e “Example: Using Random Service Times in a Queuing System” in the
getting started documentation

e “Example: Event Calendar for a Queue-Server Model” on page 2-17

e “Example: M/M/5 Queuing System” on page 4-13

e “Example: Compound Switching Logic” on page 5-7

The model in “Example: Compound Switching Logic” on page 5-7 also
illustrates how to use the Signal Latch block as described in “Generating

Random Signals Based on Arbitrary Events” on page 3-4, to generate a
random number upon each departure from an Input Switch block.

The models in “Example: Invalid Connection of Event-Based Random Number
Generator” on page 13-25 illustrate how to follow the connection rules for the
Event-Based Random Number block.

Example: Creating a Random Signal for Switching

The model below, similar to the one in “Example: Using Entity-Based Timing
for Choosing a Port” on page 9-30, implements random output switching
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with a skewed distribution. The Signal Latch block causes the Event-Based
Random Number block to generate a new random number upon each increase
in the FIFO Queue block’s #d output signal, that is, each time an entity
advances from the queue to the server. The random number becomes the
switching criterion for the Output Switch block that follows the server. The
plot reflects the skewed probability defined in the Event-Based Random
Number block, which strongly favors 1 instead of 2 or 3.
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Generating Random Time-Based Signals

The Random Number and Uniform Random Number blocks in the Simulink

Sources library create time-based random signals with Gaussian and uniform
distributions, respectively. The Event-Based Random Number block supports
other distributions, but is designed to create event-based signals. To generate
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time-based random signals using the Event-Based Random Number block,
use this procedure:

1 Insert an Event-Based Random Number block into your model and
configure it to indicate the distribution and parameters you want to use.

2 Insert and configure a Signal Latch block:
a Set Write to memory upon to Sample time hit from port wts.

b Set Read from memory upon toWrite to memory event.
The block now has input ports wts and in, but not wve or rve.

3 Insert a Step block (or another time-based source block) and set Sample
time to the desired sample time of the time-based signal you want to create.

4 Connect the Step block to the wts port of the Signal Latch block. Connect
the Event-Based Random Number block to the in port of the Signal Latch
block.

The out port of the Signal Latch block is a time-based signal whose sample

time is the one specified in the Step block and whose values come from the
Event-Based Random Number block. An example is below.

|

s ?tfp =1 e ~
ample time = N L out—alin 2 2
Ll
rlls fa Signal Latch Signal Scope

EventBased
Random Number



3 Working with Signals

Random Signal with a Sample Time of 1
10 -

Random MNumber

Time

3-8



Using Data Sets to Create Event-Based Signals

Using Data Sets to Create Event-Based Signals

Suppose you have a set of measured or expected service times for a server in
the system you are modeling and you want to use that data in the simulation.
You can use the Event-Based Sequence block to create a signal whose
sequence of values comes from the data set and whose timing corresponds to
relevant events, which in this case are the arrivals of entities at the server.
You do not need to know in advance when entities will arrive at the server
because the Event-Based Sequence block automatically infers from the server
when to output the next value in the data set.

More generally, you can use the Event-Based Sequence block to incorporate
your data into a simulation via event-based signals, where the block infers
from a subsequent block when to output the next data value. You must
connect the Event-Based Sequence block to exactly one notifying port, which
tells the block when to generate a new output value. The t input port of a
Single Server block is an example of a notifying port; for a list, see “Notifying
Ports” on page 14-4.

The Event-Based Sequence reference page provides details on the connectivity
restrictions of this block.

For examples using this block, see these sections:

¢ “Using Generation Times from a Vector” on page 1-11
e “Example: Counting Simultaneous Departures from a Server” on page 1-21

e “Example: Setting Attributes” on page 1-14

Generating Sequences Based on Arbitrary Events

A flexible way to generate event-based sequences is to use the Signal Latch
block to indicate explicitly which events cause the Event-Based Sequence
block to generate a new output value. Use this procedure:

1 Insert an Event-Based Sequence block into your model and configure it to
indicate the data you want to use.

2 Insert a Signal Latch block and set Read from memory upon to Write
to memory event. The block no longer has an rve signal input port.
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3 Determine which events should result in the output of the next data value,
and set the Signal Latch block’s Write to memory upon accordingly.

4 Connect the signal whose events you identified in the previous step to
the write-event port (wts, wve, wtr, or wfen) of the Signal Latch block.
Connect the Event-Based Sequence block to the in port of the Signal Latch
block.

The out port of the Signal Latch block is the desired event-based sequence.

Example

You can modify the model in “Example: Creating a Random Signal for
Switching” on page 3-5 by replacing the Event-Based Random Number block
with the Event-Based Sequence block.
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This causes the model’s Output Switch to select ports based on the data you
provide. If you set the Event-Based Sequence block’s Vector of output
values parameter to [1 2 3 2].', for example, then the switch selects ports
1,2,3,2,1,2, 3,2, 1,... as entities leave the queue during the simulation. If
you change Form output after final data value by to Holding final
value, then the switch selects ports 1, 2, 3, 2, 2, 2, 2,... instead.
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Understanding the Resolution Sequence for Input Signals

® “Detection of Signal Updates” on page 3-11
o “Effect of Simultaneous Operations” on page 3-12
e “Resolving the Set of Operations” on page 3-13

e “Using Event Priorities to Resolve Simultaneous Signal Updates” on page
3-13

® “Resolving Simultaneous Signal Updates Without Using Event Priorities”
on page 3-15

Detection of Signal Updates

A block that possesses a reactive port listens for relevant updates in the input
signal. Upon detecting a relevant update, the block reacts appropriately (for
example, by opening a gate or executing a discrete event subsystem).

Example of Signal Updates and Reactions

The schematics below illustrate relevant updates and the blocks’
corresponding reactions.
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Effect of Simultaneous Operations
An update in an input signal is often simultaneous with other operations in

the same block or in other blocks in the model. The processing sequence for
the set of simultaneous operations can influence the simulation behavior.

Example of Simultaneous Signal Updates

In the model below, two signal updates and one entity-generation event
occur simultaneously and independently. The simulation behaves differently
depending on the sequence in which it processes these events and their logical

consequences (where the port selection event is a logical consequence of the
update of the p signal and the gate opening is a logical consequence of the

update of the en signal). Advancement of the newly generated entity is also a
potential simultaneous event, but it can occur only if conditions in the switch,
queue, and gate blocks permit the entity to advance.
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Resolving the Set of Operations

For modeling flexibility, blocks that have reactive ports offer two levels of
choices that you can make to refine the simulation’s behavior:

Dialog Box Choice Description

This option lets you choose between two

[ Resolve simultaneous signal updates according to event prionty algorithms for the application to resolve the

reactions to signal updates, relative to other
simultaneous operations in the simulation.

If you select this option, the algorithm

¥ Resolve simultaneous signal updates according to event priority relies on the relative values of a set of event

Ewent priarity:

priorities. You must set the event priority

values in various blocks in the model.

Using Event Priorities to Resolve Simultaneous Signal
Updates

If you select the Resolve simultaneous signal updates according to
event priority option in a block that has a reactive port, and if the block
detects a relevant update in the input signal that connects to the reactive
port, then the application defers reacting to the update until it can determine
which other operations are supposed to be simultaneous.

Schematic Showing Application Processing

The next figure summarizes the steps the application takes when you select
Resolve simultaneous signal updates according to event priority and
the block has a relevant update in its input signal at a given time, T.
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Contrast this with the schematic in Processing When Not Using Event
Priority on page 3-16.

Use of the Event Calendar

To defer reacting to a signal update, the block schedules an event (“Event X”
in the schematic) on the event calendar to process the block’s reaction. The
scheduled time of the event is the current simulation time, except that the
Signal-Based Event to Function-Call Event block lets you specify a time delay.
The event priority of the event is the value of the Event priority or similarly
named parameter in the block dialog box.

After scheduling the event, the application might perform other operations in
the model at the current simulation time that are not on the event calendar.
Examples of other other operations can include updating other signals or
processing the arrival or departure of entities.
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Use of Event Priority Values

When the application begins processing the events that are scheduled on the
event calendar for the current simulation time, event priority values influence
the processing sequence. Simultaneous events having distinct event priorities
are processed in ascending order of the event priority values. As a result, the
application is resolving the update or change in the input signal (which might
be simultaneous with other operations in the same block or in other blocks)
according to the relative values of event priorities of all simultaneous events
on the event calendar. A particular value of event priority is not significant
in isolation; what matters is the ordering in a set of event priorities for a

set of simultaneous events.

Learning More About Event Priorities and the Event Calendar

¢ For an example that examines the role of event priority values, assuming
you have selected Resolve simultaneous signal updates according to
event priority, see “Example: Race Conditions at a Switch” on page 2-25.

¢ To learn how to assign event priority values, see “Setting Event Priorities”
on page 2-15.

¢ To learn how event priority values influence the processing sequence, see
“Processing Sequence for Simultaneous Events” on page 2-11.

¢ To learn about the event calendar, see “Event Processing in SimEvents”
on page 2-9.

¢ To learn what constitutes a relevant update at a reactive port, see “Reactive
Ports” on page 14-6.

Resolving Simultaneous Signal Updates Without
Using Event Priorities

If you do not select the Resolve simultaneous signal updates according
to event priority option in a block that has a reactive port, and if the block
detects a relevant update in the input signal that connects to the reactive
port, then the block processes its reaction upon detecting the update (shown
as “immediately” in the schematic below). The reaction, such as a gate
opening or an execution of a discrete event subsystem, is not deferred, does
not appear on the event calendar, and has no event priority. As a result, you
are not resolving the sequence explicitly.
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To learn how the application processes simultaneous events that may or may
not be on the event calendar, see “Processing Sequence for Simultaneous
Events” on page 2-11.

Schematic Showing Application Processing

The next figure summarizes the steps the application takes when you choose
not to select Resolve simultaneous signal updates according to event
priority in a block that has a relevant update in its input signal at a given
time, T.
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Contrast this with the schematic in Processing When Using Event Priority
on page 3-14.
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Choosing How to Resolve Simultaneous Signal Updates

The Resolve simultaneous signal updates according to event priority
option lets you defer certain operations until the application determines
which other operations are supposed to be simultaneous. To use this

option appropriately, you should understand your modeling goals, your
model’s design, and the way the application processes signal updates

that are simultaneous with other operations in the simulation. The table
indicates sources of relevant information that can help you use the Resolve
simultaneous signal updates according to event priority option.

To Read Refer to... Description

About...

Background “Detection of Signal Updates” on page | What simultaneous signal updates
3-11 and “Effect of Simultaneous are, and the context in which the
Operations” on page 3-12 option is relevant

Behavior “Using Event Priorities to Resolve How the simulation behaves when
Simultaneous Signal Updates” on you select the option
page 3-13
“Resolving Simultaneous Signal How the simulation behaves when
Updates Without Using Event you do not select the option
Priorities” on page 3-15

Examples “Events On and Off the Event Examples that illustrate the
Calendar” on page 2-31 and significance of the option
“Example: Using the Event Calendar
to Prevent Interleaving” on page
14-14
“Example: Race Conditions at a An example that examines the role of
Switch” on page 2-25 event priority values, assuming you

have selected the option
Tips “Choosing an Approach for Tips to help you decide how to

Simultaneous Events” on page
2-14

configure your model
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Update Sequence for Output Signals

When a block produces more than one output signal in response to events, the
simulation behavior might depend on the sequence of signal updates relative
to each other. This is especially likely if you use one of the signals to influence
a behavior or computation that also depends on another one of the signals, as
in “Example: Detecting Changes in the Last-Updated Signal” on page 3-18
and “Example: Detecting Changes from Empty to Nonempty” on page 9-24.

When you turn on more than one output signal from a SimEvents block’s
dialog box (typically, from the Statistics tab), the block updates each of
the signals in a sequence. See the Signal Output Ports table on the block’s
reference page to learn about the update order:

¢ In some cases, a block’s reference page specifies the sequence explicitly
using unique numbers in the Order of Update column.

For example, the reference page for the N-Server block indicates that upon
entity departures, the w signal is updated before the #n signal. The Order
of Update column in the Signal Output Ports table lists different numbers
for the w and #n signals.

* In some cases, a block’s reference page lists two or more signals without
specifying their sequence relative to each other. Such signals are updated
in an arbitrary sequence relative to each other and you should not rely on
a specific sequence for your simulation results.

For example, the reference page for the N-Server block indicates that the
w and util signals are updated in an arbitrary sequence relative to each
other. The Order of Update column in the Signal Output Ports table lists
the same number for both the w and util signals.

® When a block offers fewer than two signal output ports, the sequence
of updates does not need explanation on the block’s reference page. For
example, the reference page for the Enabled Gate block does not indicate
an update sequence because the block can output only one signal.

Example: Detecting Changes in the Last-Updated
Signal

The example below plots the ratio of the queue’s current length to the time
average of the queue length. The FIFO Queue block produces #n and len
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signals representing the current and average lengths, respectively. The
computation of the ratio occurs in a function-call subsystem that is called
when the Signal-Based Event to Function-Call Event block detects a change
in #n (as long as len is positive, to avoid division-by-zero warnings). Because
the FIFO Queue block updates the len signal before updating the #n signal,
both signals are up to date when the value change occurs in the #n signal.
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If you instead connect the len signal to the Signal-Based Event to
Function-Call Event block’s ve input port, then the block issues a function
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call upon detecting a change in the len signal. At that point, the #n value
is left over from the block’s previous arrival or departure, so the computed
ratio is incorrect.
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Multiple Simultaneous Updates of an Output Signal

Simultaneous events, which might be causally related to each other, are
common in discrete-event simulation. This section describes how they
affect output signals from SimEvents blocks. Common scenarios involving
simultaneous events include the following:

® An entity completes its service and departs from a server, which permits
an entity to arrive at the same time instant from a queue that precedes
the server.

* An entity arrives at an empty queue, finds that the subsequent server block
is also empty, and advances immediately to the server.

* An Enabled Gate block between a queue and an Entity Sink block changes
from the closed state to the open state, which permits all entities in the
queue to depart simultaneously.

This section defines zero-duration values and illustrates how you can detect
them in your simulation. The topics are as follows:

e “Zero-Duration Values of Signals” on page 3-21
* “Importance of Zero-Duration Values” on page 3-22

® “Detecting Zero-Duration Values” on page 3-22

Zero-Duration Values of Signals

Some output signals from SimEvents blocks produce a new output value for
each departure from the block. When multiple departures occur in a single
time instant, the result is a multivalued signal. That is, at a given instant in
time, the signal assumes multiple values in sequence. The sequence of values
corresponds to the sequence of departures. Although the departures and
values have a well-defined sequence, no time elapses between adjacent events.

Scenario: Server Departure and New Arrival

For example, consider the scenario in which an entity departs from a server
at time T and, consequently, permits another entity to arrive from a queue
that precedes the server. The statistic representing the number of entities in
the server is 1 just before time T because the first entity has not completed
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its service. The statistic is 1 just after time T because the second entity has
begun its service. At time T, the statistic is 0 before it becomes 1 again. The
value of 0 corresponds to the server’s empty state after the first entity has
departed and before the second entity has arrived. Like this empty state, the
value of 0 does not persist for a positive duration.

Scenario: Status of Pending Entities in a Queue

Another example of zero-duration values is in “Plotting the Pending-Entity
Signal”, which discusses a signal that indicates when the entity at the head of
a queue is unable to depart. This signal becomes 0 if the entity at the head of
the queue, previously unable to depart, finally departs. If the queue is left
with other entities that cannot depart at this time, then the signal becomes 1
again. That is, the value of 0 does not persist for a positive duration.

Importance of Zero-Duration Values

The values of signals, even values that do not persist for a positive duration,
can help you understand or debug your simulations. In the example
described in “Scenario: Server Departure and New Arrival” on page 3-21, the
zero-duration value of 0 in the signal tells you that the server experienced

a departure. If the signal assumed only the value 1 at time T (because 1

is the final value at time T), then the constant values before, at, and after
time T would fail to indicate the departure. While you could use a departure
count signal to detect departures specifically, the zero-duration value in the
number-in-block signal provides you with more information in a single signal.

Detecting Zero-Duration Values

These topics describe ways to detect and examine zero-duration values:

e “Plotting Signals that Exhibit Zero-Duration Values” on page 3-22
¢ “Plotting the Number of Signal Changes Per Time Instant” on page 3-24
* “Viewing Zero-Duration Values in the MATLAB Workspace” on page 3-24

Plotting Signals that Exhibit Zero-Duration Values

One way to visualize event-based signals, including signal values that do not
persist for a positive duration, is to use the Signal Scope or X-Y Signal Scope
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Number of Entities

block. Either of these blocks can produce a plot that includes a marker for
each signal value (or each signal-based event, in the case of the event counting
scope). For example, the figure below uses a plot to illustrate the situation
described in “Scenario: Server Departure and New Arrival” on page 3-21.

1. Entity in server 3. New entity arrives
at server attime T
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2. Entity departs
from server at time T

When multiple plotting markers occur along the same vertical line, it means
that the signal assumes multiple values at a single time instant. The callouts
in the figure describe the server states that correspond to a few key points of
the plot.

By contrast, some of the vertical lines have exactly one marker, meaning that
the signal value at that time instant is unique. For example, near time 110,
an arrival at the previously empty server is the only server-related activity
at that time instant.
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Note Unlike the Signal Scope block and X-Y Signal Scope blocks, the Scope
block in the Simulink Sinks library does not detect zero-duration values.
For more information, see “Comparison with Time-Based Plotting Tools” on
page 10-16.

Plotting the Number of Signal Changes Per Time Instant

To detect the presence of zero-duration values, but not the values themselves,
use the Instantaneous Event Counting Scope block with the Type of value
change parameter set to Either. When the input signal assumes multiple
values at an instant of time, the plot shows a stem of height of two or greater.

For an example using this block, see “Example: Plotting Event Counts to
Check for Simultaneity” on page 10-14.

Viewing Zero-Duration Values in the MATLAB Workspace

If an event-based signal assumes many values at one time instant and you
cannot guess the sequence from a plot of the signal versus time, then you can
get more information by examining the signal in the MATLAB workspace.
By creating a variable that contains each time and signal value, you can
recover the exact sequence in which the signal assumed each value during the
simulation.

See “Sending Data to the MATLAB Workspace” on page 3-31 for instructions
and an example.
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Latency in Signal Updates

In some cases, the updating of an output signal or the reaction of a block to
updates in its input signal can experience a delay:

* When you use an event-based signal as an input to a time-based block
that is not in a discrete event subsystem, the block might not react to
changes in the input at exact event times but instead might react at the
next time-based sample time hit for that block.

To make time-based blocks react to changes immediately when an event
occurs in another block, use a discrete event subsystem. For details and
examples, see Chapter 9, “Controlling Timing with Subsystems”.

¢ The update of an output signal in one block might occur after other
operations occur at that value of time, in the same block or in other blocks.
This latency does not last a positive length of time, but might affect your
simulation results. For details and an example, see “Interleaving of Block
Operations” on page 14-8.

¢ The reaction of a block to an update in its input signal might occur after
other operations occur at that value of time, in the same block or in other
blocks. This latency does not last a positive length of time, but might
affect your simulation results. For details, see “Choosing How to Resolve
Simultaneous Signal Updates” on page 3-17.

® When the definition of a statistical signal suggests that its value can vary
continuously as simulation time elapses, the block increases efficiency by
updating the signal value only at key moments during the simulation. As a
result, the signal has a somewhat outdated “approximate” value between
such key moments, but corrects the value later.

The primary examples of this phenomenon are the signals that represent
time averages, such as a server’s utilization percentage. The definitions of
time averages involve the current time, but simulation performance would
suffer drastically if the block recomputed the percentage at each time-based
simulation step. Instead, the block recomputes the percentage only upon
the arrival or departure of an entity, when the simulation ends, and when
you pause the simulation. For an example, see the reference page for the
Single Server block.
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When plotting statistics that, by definition, vary continuously as simulation
time elapses, consider using a continuous-style plot. For example, set Plot
type to Continuous in the Signal Scope block.
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Manipulating Signals

The Signal Latch is a versatile block for manipulating event-based signals.
You can use it to delay or resample signals based on events, not time. You can
also use it to change the initial condition of event-based signals. The topics
here are as follows:

® “Specifying Initial Conditions for Event-Based Signals” on page 3-27

e “Example: Resampling a Signal Based on Events” on page 3-28
In addition, see these examples:

® “Generating Random Event-Based Signals” on page 3-4

® “Generating Random Time-Based Signals” on page 3-6

e “Example: Detecting Collisions by Comparing Events” on page 2-40
e “Example: Compound Switching Logic” on page 5-7

Specifying Initial Conditions for Event-Based Signals

You can use the Signal Latch block to modify the value that an event-based
signal assumes between the start of the simulation and the first relevant
event. This is especially useful for output signals from Discrete Event
Subsystem blocks and Stateflow blocks.

To modify the initial condition of an event-based signal without modifying the
signal at other times, use this procedure:
1 Set these parameters in the Signal Latch block:

¢ Initial memory value = your desired initial condition

¢ Write to memory upon = Sample time hit from port wts

¢ Select Resolve simultaneous signal updates according to event
priority on the Write tab

¢ Read from memory upon = Write to memory event
¢ Select Report memory value upon write event, mem

¢ (Clear Report memory value upon read event, out
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The block now has signal input ports wts and in, and a signal output
port mem.

2 Connect the signal whose initial condition you want to define to both the in
and wts ports of the Signal Latch block.

The schematic below illustrates the resulting ports and connections of the
Signal Latch block.

wis [
_r|r|_rnem _
Signal in Signal with Mcdified

Initial Condition

Signal Latch

The Signal Latch block’s mem output signal uses your initial condition until
your original signal has its first update. Afterward, the mem signal and your
original signal are identical.

The following examples illustrate this technique:

e “Example: Controlling Joint Availability of Two Servers” on page 7-4
initializes an event-based signal for use in a feedback loop.

e “Example: Failure and Repair of a Server” on page 4-17 initializes an
event-based signal that is the output of a Stateflow block.

Example: Resampling a Signal Based on Events

The example below contains a server that supports preemption of
normal-priority entities by high-priority entities. This is similar to “Example:
Preemption by High-Priority Entities” on page 4-11. Suppose that a
preemption and the subsequent service of a high-priority entity represents a
time interval during which the server is inoperable. The goal of this example
is to find out how many entities are in the queue when the breakdown begins.
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A plot of the Priority Queue block’s #n output signal indicates how many
entities are in the queue at all times during the simulation.

10

Murnber of Entities in Queue

Number of Entities

[ ——

Time

The Signal Latch block resamples the #n signal, focusing only on the values
that #n assumes when a high-priority queue preempts an entity already in
the server. The Signal Latch block outputs a sample from the #n signal
whenever the Single Server block’s #p output signal increases, where #p is
the number of entities that have been preempted from the server. Between
pairs of successive preemption events, the Signal Latch block does not update
its output signal, ignoring changes in #n. A plot of the output from the Signal
Latch block makes it easier to see how many entities are in the queue when

the breakdown begins, compared to the plot of the entire #n signal.
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Sending Data to the MATLAB Workspace

Sending Data to the MATLAB Workspace

e “Example: Sending Queue Length to the Workspace” on page 3-31
e “Using the To Workspace Block with Event-Based Signals” on page 3-34

The Discrete Event Signal to Workspace block writes event-based signals to
the MATLAB workspace when the simulation stops or pauses. When inside
a discrete event subsystem, the To Workspace block can also be useful for
writing event-based signals to the MATLAB workspace.

Note To learn how to read data from the MATLAB workspace during a
discrete-event simulation, see “Using Data Sets to Create Event-Based
Signals” on page 3-9.

Example: Sending Queue Length to the Workspace

The example below shows one way to write the times and values of an
event-based signal to the MATLAB workspace. In this case, the signal is
the #n output from a FIFO Queue block, which indicates how many entities
the queue holds.

RUM_in_queus

Discrete Event Signal

to Wiatspace
#n r
e OUT Bl IN 5| IM out 5| IN g
&y auT ,>_|_’>
FIFO Qusue Single Sarver Entity Sink

Time-Based
Entity Generator

After you run this simulation, you can use the following code to create a
two-column matrix containing the times values in the first column and the
signal values in the second column.

times_values = [num_in_queue.time, num_in_queue.signals.values]
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The output below reflects the Time-Based Entity Generator block’s constant
intergeneration time of 0.8 second and the Single Server block’s constant
service time of 1.1 second.
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times_values
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From the output, you can see that the number of entities in the queue
increases at times that are a multiple of 0.8, and decreases at times that are a
multiple of 1.1. At T=8.8, a departure from the server and an entity generation
occur simultaneously; both events influence the number of entities in the
queue. The output below shows two values corresponding to T=8.8, enabling
you to see the zero-duration value that the signal assumes at this time.
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Using the To Workspace Block with Event-Based
Signals

The To Workspace block in the Simulink Sinks library can be useful for
working with event-based signals in special ways, such as

* Omitting repeated values of the signal and focusing on changes in the
signal’s value. For an example, see “Example: Sending Unrepeated Data to
the MATLAB Workspace” on page 9-22.

¢ Recording values of multiple signals when any one of the signals has
an update. To accomplish this, place multiple To Workspace blocks in a
discrete event subsystem that has multiple input ports.

If you use the To Workspace block in the Simulink Sinks library to write
event-based signals to the MATLAB workspace, you should

1 Set the block’s Save format parameter to Structure With Time, which
causes the block to record time values, not just signal values.

2 Place the To Workspace block in a discrete event subsystem to ensure
that the workspace variable records data at appropriate times during the
simulation.

For more details about discrete event subsystems, see “Role of Discrete Event
Subsystems in SimEvents Models” on page 9-7.



Modeling Queues and
Servers

The topics below supplement the discussion in “Basic Queues and Servers” in

the getting started documentation.
Using a LIFO Queuing Discipline
(p. 4-2)
Sorting by Priority (p. 4-4)

Preempting an Entity in a Server
(p. 4-10)

Modeling Multiple Servers (p. 4-13)

Modeling the Failure of a Server
(p. 4-15)

Comparing LIFO and FIFO queues

Using attribute values to control the
queue discipline

Enabling an entity to replace a lower
priority entity in a server

Modeling a bank of servers

Using Stateflow to model the

behavior of a server that might
require maintenance
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Using a LIFO Queuing Discipline

The LIFO Queue block supports the last-in, first-out (LIFO) queuing
discipline. The entity that departs from the queue at a given time is the most
recent arrival. You can interpret a LIFO queue as a stack.

Some ways to see the difference between FIFO and LIFO queuing disciplines
are to

e Attach data to entities to distinguish entities from each other. For more
information about using entities to carry data, see “Setting Attributes of
Entities” on page 1-13.

® View simulation statistics that you expect the queuing discipline to
influence. One such statistic is the average waiting time in the queue; to
compute the waiting time of each entity, the block must know which entity
is departing at a given departure time.

Example: Waiting Time in LIFO Queue

As an example, compare the FIFO and LIFO disciplines in a D/D/1 queuing
system with an intergeneration time of 0.3 and a service time of 1.
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Average Waiting Time in LIFO Queue
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Sorting by Priority

The Priority Queue block supports queuing in which entities’ positions in
the queue are based primarily on their attribute values. Arrival times are
relevant only when attribute values are equal. You specify the attribute
and the sorting direction using the Sorting attribute name and Sorting
direction parameters in the block’s dialog box. To assign values of the
attribute for each entity, you can use the Set Attribute block as described in
“Setting Attributes of Entities” on page 1-13.

Note While you can view the value of the sorting attribute as an entity
priority, this value has nothing to do with event priorities or block priorities.

Two familiar cases are shown in the example below, in which a priority
queue acts like a FIFO or LIFO queue. At the start of the simulation, the
FIFO and LIFO sections of the model each generate nine entities, the first
of which advances immediately to a server. The remaining entities stay in
the queues until the server becomes available. The sorting attribute is Count,
whose values are the entities’ arrival sequence at the queue block. In this
example, the servers do not permit preemption; preemptive servers would
behave differently.
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The FIFO plot reflects an increasing sequence of Count values. The LIFO plot
reflects a descending sequence of Count values, except for the Count=1 entity
that advances to the server before the queue has any other entities to sort.
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Count

Time
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Count Attribute for Descending Sorting (LIFO)

Count




Sorting by Priority

Example: Serving Preferred Customers First

In the example below, two types of customers enter a queuing system. One
type, considered to be preferred customers, are less common but require
longer service. The priority queue places preferred customers ahead of
nonpreferred customers. The model plots the average system time for the set
of preferred customers and separately for the set of nonpreferred customers.
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You can see from the plots that despite the shorter service time, the average
system time for the nonpreferred customers is much longer than the average
system time for the preferred customers.
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Average System Time for Monpreferred Customers
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Comparison with Unsorted Behavior

If the queue used a FIFO discipline for all customers instead of a priority
sorting, then the average system time would decrease slightly for the
nonpreferred customers and increase markedly for the preferred customers.
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Average System Time for Monpreferred Customers
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Preempting an Entity in a Server

o “Criteria for Preemption” on page 4-10
e “Residual Service Time” on page 4-10
® “Queuing Disciplines for Preemptive Servers” on page 4-11

o “Example: Preemption by High-Priority Entities” on page 4-11

The Single Server block supports preemption, which is the replacement of
an entity in a server block by an entity that satisfies certain criteria. The
preempted entity departs from the block via the P entity output port instead
of the usual OUT port.

Criteria for Preemption

Whether preemption occurs depends on attribute values of the entity in the
server and of the entity attempting to arrive at the server. You specify the
attribute and the orientation of the comparison using the Sorting attribute
name and Sorting direction parameters in the Single Server block’s dialog
box. (These parameters are available after you select Permit preemption
based on attribute.) To assign values of the sorting attribute for each entity,
you can use the Set Attribute block as described in “Setting Attributes of
Entities” on page 1-13. Valid values for the sorting attribute are any real
numbers, Inf, and -Inf.

If the attribute values are equal, no preemption occurs.
When preemption is supposed to occur, the P port must not be blocked.

Consider connecting the P port to a queue or server with infinite capacity, to
prevent a blockage during the simulation.

Note While you can view the value of the sorting attribute as an entity
priority, this value has nothing to do with event priorities or block priorities.

Residual Service Time

A preempted entity might or might not have completed its service time.
The remaining service time the entity would have required if it had not



Preempting an Entity in a Server

been preempted is called the entity’s residual service time. If you select
Write residual service time to attribute in the Single Server block,
then the block records the residual service time of each preempted entity
in an attribute of that entity. If the entity completes its service time before
preemption occurs, then the residual service time is zero.

For entities that depart from the block’s OUT entity output port (that is,
entities that are not preempted), the block records a residual service time only
if the entity already has an attribute whose name matches the Residual
service time attribute name parameter value. In this case, the block sets
that attribute to zero when the entity departs from the OUT port.

Queuing Disciplines for Preemptive Servers

When you permit preemption in a Single Server block preceded by a queue,
only the entity at the head of the queue can preempt an entity in the server.

The Priority Queue block is particularly appropriate for use with the
preemption feature of the Single Server block. When an entity with
sufficiently high priority arrives at the Priority Queue block, the entity goes
to the head of the queue and immediately advances to the server.

When using the Single Server and Priority Queue blocks together, you
typically set the Sorting attribute name and Sorting direction
parameters to the same values in both blocks.

Example: Preemption by High-Priority Entities

The example below generates two classes of entities, most with an
EntityPriority attribute value of 0 and some with an EntityPriority
attribute value of - Inf. The sorting direction in the Priority Queue and Single
Server blocks is Ascending, so entities with sorting attribute values of - Inf
go to the head of the priority queue and immediately preempt any entity in
the server except another entity whose sorting attribute value is - Inf.

One plot shows when nonpreemptive departures occur, while another plot
indicates the residual service time whenever preemptive departures occur.
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Modeling Multiple Servers

You can use the N-Server and Infinite Server blocks to model a bank of
identical servers operating in parallel. The N-Server block lets you specify

the number of servers using a parameter, while the Infinite Server block
models a bank of infinitely many servers.

To model multiple servers that are not identical to each other, you must use
multiple blocks. For example, to model a pair of servers whose service times
do not share the same distribution, use a pair of Single Server blocks rather
than a single N-Server block. The example in “Example: Selecting the First
Available Server” in the getting started documentation illustrates the use of
multiple Single Server blocks with a switch.

Example: M/M/5 Queuing System

The example below shows a system with infinite storage capacity and five
identical servers. In the notation, the M stands for Markovian; M/M/5 means

that the system has exponentially distributed interarrival and service times,
and five servers.
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The plot below shows the waiting time in the queuing system.

Average Waiting Time in Queuing System
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You can compare the empirical values shown in the plot with the theoretical
value, E[S], of the mean system time for an M/M/m queuing system with an
arrival rate of A=1/2 and a service rate of u=1/5. Using expressions in [2],
the computation is as follows.

A /2 1

P o T B/5) 2

m-1 n m
ro=[1+ 3 O M) 1 10801
o onl m! 1-p

m
1,10 o

E[S]
Lop ml om-p)?

=5.26

Zooming in the plot shows that the empirical value is close to 5.26.
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Modeling the Failure of a Server

In some applications, it is useful to model situations in which a server fails.
For example, a machine might break down and later be repaired, or a network
connection might fail and later be restored. This section explores ways to
model failure of a server, as well as server states. The topics are as follows:

® “Server States” on page 4-15

* “Using a Gate to Implement a Failure State” on page 4-15

* “Using Stateflow to Implement a Failure State” on page 4-16

Server States

The server blocks in SimEvents do not have built-in states, so you can design
states in any way that is appropriate for your application. Some examples of
possible server states are in the table below.

Server as Server as Machine Server as Human

Communication Processor

Channel

Transmitting message | Processing part Working

Connected but idle Waiting for new part to | Waiting for work
arrive

Unconnected Off Off duty

Holding message Holding part (pending | Waiting for resource

(pending availability of | availability of next

destination) operator)

Establishing connection | Warming up Preparing to begin work

Using a Gate to Implement a Failure State

For any state that represents a server’s inability or refusal to accept
entity arrivals even though the server is not necessarily full, a common
implementation involves an Enabled Gate block preceding the server.
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The gate prevents entity access to the server whenever the gate’s control
signal at the en input port is zero or negative. The logic that creates the en
signal determines whether or not the server is in a failure state. You can
implement such logic using the techniques described in Chapter 6, “Using
Logic” or using Stateflow to transition among a finite number of server states.

For an example in which an Enabled Gate block precedes a server, see
“Example: Controlling Joint Availability of Two Servers” on page 7-4. The
example is not specifically about a failure state, but the idea of controlling
access to a server is similar. Also, you can interpret the Signal Latch block
with the st output signal enabled as a two-state machine that changes state
when read and write events occur.

Note A gate prevents new entities from arriving at the server but does not
prevent the current entity from completing its service. If you want to eject
the current entity from the server upon a failure occurrence, then you can
use the preemption feature of the server to replace the current entity with
a high-priority “placeholder” entity.

Using Stateflow to Implement a Failure State

Stateflow is a suitable tool for implementing transitions among a finite
number of server states. If you need to support more than just two states,
then a Stateflow block might be more natural than a combination of Enabled
Gate and logic blocks.

When modeling interactions between the state chart and discrete-event
aspects of the model, note that a function call is the recommended way to
make Stateflow blocks respond to asynchronous state changes. You can use
blocks in the Event Generators and Event Translation libraries to produce a
function call upon signal-based events or entity departures; the function call
can invoke a Stateflow block. Conversely, a Stateflow block can output a
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function call that can cause a gate to open, an entity counter to reset, or an
entity generator to generate a new entity.

Example: Failure and Repair of a Server

The example below uses a Stateflow block to describe a two-state machine. A
server is either down (failed) or up (operable). The state of the server is an
output signal from the Stateflow block and is used to create the enabling
signal for an Enabled Gate block that precedes a server in a queuing system.

Entities representing customers
in queuing system

t en I r &j
%DUT bl IN out 1L, ouT BN OUT f—| IN .
B IN H
Time-Based FIFO Queue Enabled Gate Single Server Instantal_'ueous Entity
Entity Generator Counting Scope
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W s 1 =1
[Duration of 4 ¢
fallurE] [Repair Signal-Based
[Occurrence of ey Wyark] Function-Call
failure] Ewent Genaratar
Event-Bazed t 1 #n
%DUT Random Number I auT N
Single Senverl Entity Sink

Time-Based
Entity Generatord

The lower portion of the model contains a parallel queuing system. The
entities in the lower queuing system represent failures, not customers.
Generation of a failure entity represents a failure occurrence in the upper
queuing system. Service of a failure entity represents the time during which
the server in the upper queuing system is down. Completion of service of a
failure entity represents a return to operability of the upper queuing system.

When the lower queuing system generates an entity, changes in its server’s
#n signal invoke the Stateflow block that determines the state of the upper
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queuing system. Increases in the #n signal cause the server to go down, while
decreases cause the server to become operable again.

: :
P
% en: server_up=1;
&
by
-
event event
Down
en: server_up=0;
-
Vv
I ﬂﬂ
|Ready

While this simulation runs, Stateflow alternately highlights the up and down
states. The plot showing entity departures from the upper queuing system
shows gaps, during which the server is down.

Entity Departures from Queuing System

o5 T

0 100 200 300 400 500 600 700 800 900 1000
Time

Number of Entities

Although this two-state machine could be modeled more concisely with a
Signal Latch block instead of a Stateflow block, the Stateflow chart scales
more easily to include additional states or other complexity.
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Example: Adding a Warmup Phase

The example below modifies the one in “Example: Failure and Repair of a
Server” on page 4-17 by adding a warmup phase after the repair is complete.
The Enabled Gate block in the upper queuing system does not open until the
repair and the warmup phase are complete. In the lower queuing system, an
additional Single Server block represents the duration of the warmup phase.

Entities representing customers

in queuing system
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In the Stateflow block, the input function calls controls when the repair
operation starts, when it ends, and when the warmup is complete. The result
of the function-call event depends on the state of the chart when the event
occurs. A rising edge of the Repair Work block’s #n signal starts the repair
operation, a falling edge of the same signal ends the repair operation, and a
falling edge of the Warmup block’s #n signal completes the warmup.
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While this simulation runs, Stateflow alternates among the three states. The
plot showing entity departures from the upper queuing system shows gaps,
during which the server is either under repair or warming up. By comparing
the plot to the one in “Example: Failure and Repair of a Server” on page
4-17, you can see that the gaps in the server’s operation last slightly longer.
This is because of the warmup phase.
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Routing Techniques

The topics below supplement the discussion in “Designing Paths for Entities”

in the getting started documentation.

Output Switching Based on a Signal
(p. 5-2)

Example: Cascaded Switches with
Skewed Distribution (p. 5-6)

Example: Compound Switching
Logic (p. 5-7)

Ensuring accurate timing for
signal-based output switching

Random switching using cascaded
switch blocks

Combination of round-robin and
random switching
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Output Switching Based on a Signal

® “Specifying an Initial Port Selection” on page 5-2
e “Using the Storage Option to Prevent Latency Problems” on page 5-2

Specifying an Initial Port Selection

When the Output Switch block uses an input signal p, the block might
attempt to use the p signal before its first sample time hit. If the initial value
of the p signal is out of range (for example, zero) or is not your desired initial
port selection for the switch, then you should specify the initial port selection
in the Output Switch block’s dialog box. Use this procedure:

1 Select Specify initial port selection.

2 Set Initial port selection to the desired initial port selection. The value
must be an integer between 1 and Number of entity output ports. The
Output Switch block uses Initial port selection instead of the p signal’s
value until the signal has its first sample time hit.

Tip A common scenario in which you should specify the initial port selection is
when the p signal is an event-based signal in a feedback loop. The first entity
is likely to arrive at the switch before the p signal has its first sample time
hit. See “Example: Choosing the Shortest Queue” on page 6-3 for an example
of this scenario.

Using the Storage Option to Prevent Latency

Problems

When the Output Switch block uses an input signal p, the block must
successfully coordinate its entity-handling operations with the operations of
whichever block produces the p signal. For example, if p is an event-based
signal that can change at the same time when an entity arrives, the
simulation behavior depends on whether the block reacts to the signal update
before or after the arrival.
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Coordination that is inappropriate for the model can cause the block to use a
value of p from a previous time. You can prevent a systemic latency problem
by using the Store entity before switching option.

Effect of Enabling Storage

If you select Store entity before switching in the Output Switch block, then
the block becomes capable of storing one entity at a time. Furthermore, the
block decouples its arrival and departure processing to give other blocks along
the entity’s path an opportunity to complete their processing. Completing
their processing is important if, for example, it affects the p signal of the
Output Switch block.

If an entity arrives and the storage location is empty, then the block does
the following:

1 Stores the arriving entity.

2 Temporarily yields control to blocks in the model along the entity’s path.
For example, this might give other blocks a chance to update the signal
that connects to the p port.

3 Determines which entity output port is the selected port.
4 If the selected port is not blocked, the stored entity departs immediately.

If the selected port is blocked, the stored entity departs when one of these
occurs:

¢ The selected port becomes unblocked.
¢ The selection changes to a port that is not blocked.

¢ The stored entity times out.For details on timeouts, see Chapter 8,
“Forcing Departures Using Timeouts” in the user guide documentation.
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Note A stored entity can stay in the block for a nonzero period of time if the
selected port is blocked. The design of your model should account for the
effect of this phenomenon on statistics or other simulation behaviors. For an
example scenario, see the discussion of average wait in “Example Without
Storage” on page 5-5.

Even if the stored entity departs at the same time that it arrives, step
Temporarily yields control to blocks in the model along the entity’s path.
For example, this might give other blocks a chance to update the signal that
connects to the p port.

on page 3 is important for preventing latency.

Example Using Storage. The model in “Example: Choosing the Shortest
Queue” on page 6-3 uses the Store entity before switching option in the
Output Switch block. Suppose the queues have sufficient storage capacity so
that the Output Switch block never stores an entity for a nonzero period of
time. When an entity arrives at the Output Switch block, it does the following:

1 Stores the entity.

2 Yields control to other blocks so that the Time-Based Entity Generator and
Discrete Event Subsystem blocks can update their output signals in turn.

3 Possibly detects a change in the p signal as a result of the Discrete Event
Subsystem block’s computation, and reacts accordingly by selecting the
appropriate entity output port.

4 Outputs the entity using the up-to-date value of the p signal.

Effect of Disabling Storage

If you do not select Store entity before switching in the Output Switch
block, then the block processes an arrival and departure as an atomic
operation. The block assumes that the p signal is already up to date at the
given time.

For common problems and troubleshooting tips, see “Unexpected Use of Old
Value of Signal” on page 13-17 in the user guide documentation.
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Example Without Storage. The model below does not use the Store entity
before switching option in the Output Switch block. Storage in the switch is
unnecessary here because the application processes service completion events
after the Repeating Sequence Stair block has already updated its output
signal at the given time.

Tip It is not always easy to determine whether storage is unnecessary in
a given model. If you are not sure, you should select Store entity before
switching.

Repesting Ewvent-Based
Sequence Lr Mo storage Random Number
Stair t 3
L OUT paa{ 1N i
Discrete Event ] Ut ==
Signal Ewvent-Bas=d - Entity Sink
to Wodspace [ + Random Mumber1 Single Server
q(b ouT 2 oUT v i
ouT 21N ouT2 =
- - Entity Sink1
Time-Based M-Server Single Server!
Entity Generator

Ouwtput Switch

Furthermore, storage in the switch is probably undesirable in this model.
Storing entities in the Output Switch block for a nonzero period of time would
affect the computation of average wait, which is the Infinite Server block’s w
output signal. If the goal is to compute the average waiting time of entities
that have not yet reached the Single Server blocks, then the model would need
to account for entities stored in the switch for a nonzero period of time.
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Example: Cascaded Switches with Skewed Distribution

Suppose entities represent manufactured items that undergo a quality control
process followed by a packaging process. Items that pass the quality control
test proceed to one of three packaging stations, while items that fail the
quality control test proceed to one of two rework stations. You can model the
decisionmaking using these switches:

¢ An Output Switch block that routes items based on an attribute that stores
the results of the quality control test

¢ An Output Switch block that routes passing-quality items to the packaging
stations

¢ An Output Switch block that routes failing-quality items to the rework
stations

The figure below illustrates the switches and their switching criteria.

st |Event-Based
Random Mumhber
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Yalue vector = [1 2] Passed (2N A2 OUT? b
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— T | QT2 C— Equiprobakle
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Set Aftribute Qutput Switch ouality
GualityControl Swyitching Criterian = carntrol A OUTT p—
for First Switch From attribute (I o i
Cuality Cortrol OUTZ po—
Ciutput Switch2
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Example: Compound Switching Logic

Suppose a single server processes entities from two groups each consisting

of three sources. The switching component between the entity sources and
the server determines which entities proceed to the server whenever it is
available. The switching component uses a distribution that is skewed toward
entities from the first group. Within each group, the switching component
uses a round-robin approach.

The example below shows how to implement this design using three Input
Switch blocks. The first two Input Switch blocks have their Switching
criterion parameter set to Round robin to represent the processing of
entities within each group of entity sources. The last Input Switch block uses
a random signal with a skewed probability distribution to choose between the
two groups. The Signal Latch block causes the random number generator to
draw a new random number after each departure from the last Input Switch
block.
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For tracking purposes, the model assigns an attribute to each entity based
on its source. The attribute values are 1, 2, and 3 for entities in the first
group and -1, -2, and -3 for entities in the second group. You can see from
the plot below that negative values occur less frequently than positive
values, reflecting the skewed probability distribution. You can also see that
the positive values reflect a round-robin approach among servers in the top
group, while negative values reflect a round-robin approach among servers
in the bottom group.
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Role of Logic in SimEvents Models
(p. 6-2)

Using Embedded MATLAB Function
Blocks for Logic (p. 6-3)

Using Logic Blocks (p. 6-10)

Typical situations in which logic
affects simulation behavior

Specifying logic using MATLAB code

Specifying logic using a block
diagram
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Role of Logic in SimEvents Models

Logic can be an important component in a discrete-event simulation, for
specifying

® Normal but potentially complex routing or gating behavior.

For example, you might want to model a multiple-queue system in which
entities advance to the shortest queue. Such a model must also indicate
what happens if the minimum length is not unique.

¢ Handling of overflows, blockages, and other special cases.

For example, a communication system might drop packets that overflow a
queue, while a manufacturing assembly line might pause processing at one
machine if it releases parts that overflow a second machine.
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Using Embedded MATLAB Function Blocks for Logic

If your logic algorithm is easier to express in MATLAB code than in a
block diagram, then you can use the Embedded MATLAB Function block
to implement the logic. Details about how to use this block are in “Using
the Embedded MATLAB Function Block” in the Simulink documentation.
This section provides examples that are particularly relevant for logic in
SimEvents models:

¢ “Example: Choosing the Shortest Queue” on page 6-3

e “Example: Varying Fluid Flow Rate Based on Batching Logic” on page 6-6
If your logic algorithm requires data from an earlier call to the function, then
you can use persistent variables to retain data between calls. For examples
of this technique, see

® The Switching Logic subsystems in the Astable Multivibrator Circuit demo.

¢ “Example: Computing a Time Average of a Signal” on page 11-10

Note If you put an Embedded MATLAB Function block in a Discrete Event
Subsystem block, use the Ports and Data Manager instead of Model Explorer
to view or change properties such as the size or source of an argument. Model
Explorer does not show the contents of Discrete Event Subsystem blocks.

Example: Choosing the Shortest Queue

The model below directs entities to the shortest of three queues. It uses an
Output Switch block to create the paths to the different queues. To implement
the choice of the shortest queue, a discrete event subsystem queries each
queue for its current length, determines which queue or queues achieve the
minimum length, and provides that information to the Output Switch block.
To ensure that the information is up to date when the Output Switch block
attempts to output the arriving entity, the block uses the Store entity before
switching option; for details, see “Using the Storage Option to Prevent
Latency Problems” on page 5-2.
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For simplicity, the model omits any further processing of the entities after
they leave their respective queues.
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Although the block diagram shows signals at the #n signal output ports from
the queue blocks and another signal at the p signal input port of the Output
Switch block, the block diagram does not indicate how to compute p from
the set of #n values. That computation is performed inside a discrete event
subsystem that contains an Embedded MATLAB Function block.
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If you double-click an Embedded MATLAB Function block in a model, an
editor window shows the MATLAB function that specifies the block. In this
example, the following MATLAB function computes the index of a queue
having the shortest length, where the individual queue lengths are n1, n2,
and n3. If more than one queue achieves the minimum, then the computation
returns the smallest index among the queues that minimize the length.

function p = findmin(n1, n2, n3)

% p is the index of a queue having the shortest length.
[minlength,p] = min([n1 n2 n3]);

Note For visual simplicity, the model uses Goto and From blocks to connect
the #n signals to the computation.
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The figure below shows a sample plot. Each stem corresponds to an entity
departing from the switch block via one of the three entity output ports.

Index of Entity Output Port for Last Departure from Output Switch
3 =

QL LI DI DT T D

] 2 4 & 8 10 12 14 16 18 20
Time

Port Index

For a variation on this model that uses logic blocks instead of the Embedded
MATLAB Function block, see “Example: Choosing the Shortest Queue Using
Logic Blocks” on page 6-16.

Example: Varying Fluid Flow Rate Based on Batching
Logic

The model below represents a batching process in which a tank accumulates
fluid up to a desired level of 5. When the level reaches 5, the tank switches
to an emptying mode, modeling the creation of a batch. When the tank is
empty, an entity generator creates an entity that represents the container
for the batch of fluid. Batching logic determines whether the tank is filling
or emptying.
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Top-Level Model

Within a discrete event subsystem, an Embedded MATLAB Function block
uses a logical if-then structure to set the inflow and outflow rates. The
MATLAB code also computes the net flow rate, which forms the block’s output
signal. The subsystem and code are below.
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function net = netflowrate(ran,maxout,state)

% Compute the inflow and outflow rates.

if (state == 1)
% Empty the tank.
in = 0;
out = maxout;
else
% Fill the tank.
in = ran;
out = 0;
end

% Compute the net flow rate, which forms the output.
net = in - out;

While you could alternatively use a Switch block to compute the net flow rate,
the choice of MATLAB code or a block-diagram representation might depend
on which approach you find more intuitive.

The model plots the continuously changing level of fluid in the tank. A stem
plot shows when each batch is created.
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Using Logic Blocks

¢ “Example: Using Servers in Shifts” on page 6-11
¢ “Example: Choosing the Shortest Queue Using Logic Blocks” on page 6-16

The following blocks can be useful for modeling logic because they return
alOorl:

Relational Operator

¢ Compare To Constant and Compare To Zero

Interval Test and Interval Test Dynamic

Detect Change, Detect Decrease, Detect Increase, etc.

Signal Latch

Note Some blocks return a 0 or 1 of a Boolean or integer data type. Blocks in
the SimEvents libraries process signals whose data type is double. To convert
between data types, use the Data Type Conversion block in the Simulink
Signal Attributes library.

For switching, you might need to compute an integer that indicates a port
number. Here are some useful blocks for this situation:

Switch
Lookup Table

® Bias

Rounding Function, if an earlier computation returns a noninteger

Other blocks in the Math Operations library

See these examples:

e “Example: Using Servers in Shifts” on page 6-11
¢ “Example: Choosing the Shortest Queue Using Logic Blocks” on page 6-16
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¢ The logic diagrams depicted in “Stopping Upon Reaching a Particular
State” on page 11-36

® The gate examples, especially “Example: Controlling Joint Availability
of Two Servers” on page 7-4

Example: Using Servers in Shifts

Suppose you have four servers that operate in mutually exclusive shifts
of unequal lengths, and you want to direct each entity to the server that is
currently on duty. Suppose that the server on duty has the following index
between 1 and 4:

between midnight and 4 A.M.
between 4 A.M. and noon

Index =
between noon and 8 P.M.

between 8 P.M. and midnight

B~ W N =

Below are two methods of computing this index in a subsystem. One method
uses both logical and numerical blocks, while the other method is purely
numerical.

Index Computation 1

You can compute the index of the server on duty using a subsystem like

the one shown below, where the Interval Test blocks use Lower limit and
Upper limit parameter values that represent the start and end of each shift
in each 24-hour day.
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For example, the second shift is represented by the second Interval Test block,
whose dialog box is shown below.

E Function Block Parameters: Interval Test2 x|

—Interval Test [mask) [link]

[ the input iz in the interval between the lower limit and the upper limit, then the output
iz TRUE, otherwise it is FALSE.

—Parameters

[~ Interval clozed on right
Upper limit:
[EIRE

¥ Interval closed on left

Lawer linit:
|BO7E0°4

Output data type mode: | uintd LI

Cancel Help | Apply |
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Index Computation 2

Alternatively, you can compute the index of the server on duty using a
subsystem like the one shown below, where each Pulse Generator block
assumes the corresponding index value when that server is on duty, and
assumes the value 0 at other times. In particular,

® Period = 60*60*24 for all Pulse Generator blocks, to represent a daily
cycle in seconds

¢ Amplitude gives the index for each server, between 1 and 4

¢ Pulse width gives the length of each server’s shift

¢ Phase delay gives the starting time of each server’s shift

=+

Fulse
Generatord

n

Fulse

Generator
Cut

Fulse
Feneratord

=+

Fulse
Generatord Add

¥
+

b d
+

For example, the second shift is represented by the second Pulse Generator
block, whose dialog box is shown below.
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6-14

[Z]source Block Parameters: Pulse Generator2 |

—Pulze Generator

Output pulzes:

it [t »= Phazelelay] & Pulze iz on
T[] = Amplitude

else
Y[t)=0

end

Pulze tppe determines the computational technigue used.
Time-bazed iz recommended for use with a vaniable step solver, while Sample-bagzed

iz recommended for uze with a fived step sobver or within a discrete portion of a model
uzing a wariable step zolver,

—Parameters

Pulze type: I Time based

Bl
Time [l]:l |Jze zimulation time LI
Amplitude:;
|2

Period [zecs):

|B07E0°24

Pulze “Width [% of penod):
100771 43)

Phaze delay [zecs]:
|BO7E0°4

[¥ Interpret vector parameters as 1-D

Cancel Help

Top-Level Model

The figure below shows how you can integrate either kind of index
computation, contained in a subsystem, into a larger model. It is similar to
the example in “Example: Choosing the Shortest Queue Using Logic Blocks”
on page 6-16 except that this example uses different switching logic that does
not depend on feedback from the queues. The subsystem in this model is a
virtual subsystem used for visual simplicity, not a discrete event subsystem.
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The sample plot below reflects the use of shifts. Each plotting marker
corresponds to an entity departing from the switch block via one of the four

entity output ports.
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6-16

Example: Choosing the Shortest Queue Using Logic

Blocks

This example, a variation on the model in “Example: Choosing the Shortest
Queue” on page 6-3, directs entities to the shortest of three queues. The
discrete event subsystem computes the index of the shortest queue using logic
blocks. If more than one queue achieves the minimum, then the computation
returns the smallest index among the queues that minimize the length.
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7

Regulating Arrivals Using
Gates

Role of Gates in SimEvents Models = What gates represent in various

(p. 7-2) models

Keeping a Gate Open Over a Time Admitting entities during a time
Interval (p. 7-4) interval of arbitrary length
Opening a Gate Instantaneously Admitting an entity when an event
(p. 7-6) occurs

Using Logical Combinations of Gates Implementing compound logic for
(p. 7-9) entity admission
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Role of Gates in SimEvents Models

® “Accessing Gate Blocks” on page 7-3
* “Types of Gates” on page 7-3

By design, certain blocks change their availability to arriving entities
depending on the circumstances. For example,

® A queue or server accepts arriving entities as long as it is not already full
to capacity.

* An input switch accepts an arriving entity through a single selected entity
input port but forbids arrivals through other entity input ports.

Some applications require more control over whether and when entities
advance from one block to the next. A gate provides flexible control via its
changing status as either open or closed: by definition, an open gate permits
entity arrivals as long as the entities would be able to advance immediately to
the next block, while a closed gate forbids entity arrivals. You configure the
gate so that it opens and closes under circumstances that are meaningful in
your model.

For example, you might use a gate

¢ To create periods of unavailability of a server. For example, you might be
simulating a manufacturing scenario over a monthlong period, where a
server represents a machine that runs only 10 hours per day. An enabled
gate can precede the server, to make the server’s availability contingent
upon the time.

To learn about enabled gates, which can remain open for a time interval
of nonzero length, see “Keeping a Gate Open Over a Time Interval” on
page 7-4.

¢ To make departures from one queue contingent upon departures from a
second queue. A release gate can follow the first queue. The gate’s control
signal determines when the gate opens, based on decreases in the number
of entities in the second queue.

To learn about release gates, which open and then close in the same time
instant, see “Opening a Gate Instantaneously” on page 7-6.
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e With the First port that is not blocked mode of the Output Switch
block. Suppose each entity output port of the switch block is followed by a
gate block. An entity attempts to advance via the first gate; if it is closed,
then the entity attempts to advance via the second gate, and so on.

This arrangement is explored in “Using Logical Combinations of Gates”
on page 7-9.

To learn about implementing logic that determines when a gate is open or
closed, see Chapter 6, “Using Logic”.

Accessing Gate Blocks
The gate blocks reside in the Gates library of SimEvents.

A gate block forbids or permits entities to advance from the block before

the gate to the block after the gate. For example, if you want to control
advancement from a queue to a server, then place the gate block after the
queue and before the server. Many models follow a gate with a storage block,
such as a queue or server.

Types of Gates
The Gates library offers these fundamentally different kinds of gate blocks:

¢ The Enabled Gate block, which uses a control signal to determine time
intervals over which the gate is open or closed. For more information, see
“Keeping a Gate Open Over a Time Interval” on page 7-4.

* The Release Gate block, which uses a control signal to determine a discrete
set of times at which the gate is instantaneously open. The gate is closed at
all other times during the simulation. For more information, see “Opening
a Gate Instantaneously” on page 7-6.
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Keeping a Gate Open Over a Time Interval

The Enabled Gate block uses a control signal at the input port labeled en to
determine when the gate is open or closed:

¢ When the en signal is positive, the gate is open and an entity can arrive as
long as it would be able to advance immediately to the next block.

¢ When the en signal is zero or negative, the gate is closed and no entity
can arrive.

Because the en signal can remain positive for a time interval of arbitrary
length, an enabled gate can remain open for a time interval of arbitrary
length. The length can be zero or a positive number.

Depending on your application, the en signal can arise from time-driven
dynamics, state-driven dynamics, a SimEvents block’s statistical output
signal, or a computation involving various types of signals.

Example: Controlling Joint Availability of Two
Servers

Suppose that each entity undergoes two processes, one at a time, and that the
first process does not start if the second process is still in progress for the
previous entity. Assume for this example that it is preferable to model the
two processes using two Single Server blocks in series rather than one Single
Server block whose service time is the sum of the two individual processing
times; for example, you might find a two-block solution more intuitive or you
might want to access the two Single Server blocks’ utilization output signals
independently in another part of the model.

If you connect a queue, a server, and another server in series, then the first
server can start serving a new entity while the second server is still serving
the previous entity. This does not accomplish the stated goal. The model
needs a gate to prevent the first server from accepting an entity too soon, that
is, while the second server still holds the previous entity.
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One way to implement this is to precede the first Single Server block with
an Enabled Gate block that is configured so that the gate is closed when an
entity is in either server. In particular, the gate

¢ Is open from the beginning of the simulation until the first entity’s
departure from the gate

¢ (Closes whenever an entity advances from the gate to the first server, that
is, when the gate block’s #d output signal increases

* Reopens whenever that entity departs from the second server, that is, when
the second server block’s #d output signal increases

This arrangement is shown below.
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The Signal Latch block’s st output signal becomes 0 when the block’s rve
input signal increases and becomes 1 when the wve input signal increases.
That is, the st signal becomes 0 when an entity departs from the gate and
becomes 1 when an entity departs from the second server. The block labeled
Open Gate at Start of Simulation is another Signal Latch block; its purpose
is to modify the st signal only by defining an initial condition of 1 (using the
technique described in “Specifying Initial Conditions for Event-Based Signals
on page 3-27). In summary, the entity at the head of the queue advances to
the first Single Server block if and only if both servers are empty.

»
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Opening a Gate Instantaneously

e “Example: Synchronizing Service Start Times with the Clock” on page 7-6
¢ “Example: Opening a Gate Upon Entity Departures” on page 7-7

The Release Gate block opens instantaneously at a discrete set of times
during the simulation and is closed at all other times. The gate opens when a
signal-based event or a function call occurs. By definition, the gate’s opening
permits one pending entity to arrive if able to advance immediately to the next
block. No simulation time passes between the opening and subsequent closing
of the gate; that is, the gate opens and then closes in the same time instant. If
no entity is already pending when the gate opens, then the gate closes without
processing any entities. It is possible for the gate to open multiple times in a
fixed time instant, if multiple gate-opening events occur in that time instant.

An entity passing through a gate must already be pending before the
gate-opening event occurs. Suppose a Release Gate block follows a Single
Server block and a gate-opening event is scheduled simultaneously with a
service completion event. If the gate-opening event is processed first, then
the gate opens and closes before the entity completes its service, so the entity
does not pass through the gate at that time instant. If the service completion
is processed first, then the entity is already pending before the gate-opening
event is processed, so the entity passes through the gate at that time instant.
To learn more about the processing sequence for simultaneous events, see
“Setting Event Priorities” on page 2-15.

Example: Synchronizing Service Start Times with the
Clock

In the example below, a Release Gate block with an input signal from a Pulse
Generator block ensures that entities begin their service only at fixed time
steps of 1 second, even though the entities arrive asynchronously. In this
example, the Release Gate block has Open gate upon set to Change in
signal from port vc and Type of change in signal value set to Rising,
while the Pulse Generator block has Period set to 1. (Alternatively, you
could set Open gate upon to Trigger from port tr and Trigger type to
Rising.)
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The plots below show that the entity generation times can be noninteger
values, but the service beginning times are always integers.
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Example: Opening a Gate Upon Entity Departures

In the model below, two queue-server pairs operate in parallel and an entity
departs from the top queue only in response to a departure from the bottom
queue. In particular, departures from the bottom queue block cause the Entity
Departure Event to Function-Call Event block to issue a function call, which
in turn causes the gate to open. The Release Gate block in this model has the
Open gate upon parameter set to Function call from port fcn.
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If the top queue in the model is empty when the bottom queue has a
departure, then the gate opens but no entity arrives there.

When configuring a gate to open based on entity departures, be sure the logic
matches your intentions. For example, when looking at the model shown
above, you might assume that entities advance through the queue-server pairs
during the simulation. However, if the Output Switch block is configured to
select the first entity output port that is not blocked, and if the top queue
has a large capacity relative to the number of entities generated during the
simulation duration, then you might find that all entities advance to the

top queue, not the bottom queue. As a result, no entities depart from the
bottom queue and the gate never opens to permit entities to depart from the
top queue. By contrast, if the Output Switch block is configured to select
randomly between the two entity output ports, then it is likely that some
entities reach the servers as expected.

Alternative Using Value Change Events

An alternative to opening the gate upon departures from the bottom queue
is to open the gate upon changes in the value of the #d signal output from
that queue block. The #d signal represents the number of entities that have
departed from that block, so changes in the value are equivalent to entity
departures. To implement this approach, set the Release Gate block’s Open
gate upon parameter to Change in signal from port vc and connect the
ve port to the queue block’s #d output signal.
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Using Logical Combinations of Gates
You can use multiple gate blocks in combination with each other:
¢ Using a Release Gate block and/or one or more Enabled Gate blocks in

series is equivalent to a logical AND of their gate-opening criteria. For an
entity to pass through the gates, they must all be open at the same time.

Note You should not connect two Release Gate blocks in series. No entities
would ever pass through such a series of gates because each gate closes
before the other gate opens, even if the gate-opening events occur at the
same value of the simulation clock.

¢ Using multiple gate blocks in parallel, you can implement a logical OR of
their gate-opening criteria. Use the Output Switch and Path Combiner
blocks as in the figure below and set the Output Switch block’s Switching
criterion parameter to First port that is not blocked.
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Each entity attempts to arrive at the first gate; if it is closed, the entity
attempts to arrive at the second gate, and so on. If all gates are closed,
then the Output Switch block’s entity input port is unavailable and the
entity must stay in a preceding block (such as a queue or server preceding
the switch).
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Note The figure above uses two Release Gate blocks and one Enabled
Gate block, but you can use whatever combination is suitable for the logic
of your application and whatever sequence you prefer. Also, the figure
above omits the control signals (ve and en) for visual clarity but in your
model these ports must be connected.

The Enabled Gate and Release Gate blocks open and close their gates in
response to updates in their input signals. If you expect input signals for
different gate blocks to experience simultaneous updates, then consider the
sequence in which the application resolves the simultaneous updates. For
example, if you connect an Enabled Gate block to a Release Gate block in
series and the enabled gate closes at the same time that the release gate
opens, then the sequence matters. If the gate-closing event is processed
first, then a pending entity cannot pass through the gates at that time; if
the gate-opening event is processed first, then a pending entity can pass
through the gates before the gate-closing event is processed. To control the
sequence, select the Resolve simultaneous signal updates according to
event priority parameters in the gate blocks and specify appropriate Event
priority parameters. For details, see “Setting Event Priorities” on page 2-15.

Example: First Entity as a Special Case

This example illustrates the use of a Release Gate block and an Enabled Gate
block connected in parallel. The Release Gate block permits the arrival of the
first entity of the simulation, which receives special treatment, while the
Enabled Gate block permits entity arrivals during the rest of the simulation.
In this example, a warmup period at the beginning of the simulation precedes
normal processing.
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The Release Gate block is open precisely when the #d output signal from the
Time-Based Entity Generator block rises from 0 to 1. That is, the gate is open
for the first entity of the simulation and no other entities. The first entity
arrives at an Infinite Server block, which represents the warmup period.

Subsequent entities find the Release Gate block’s entity input port
unavailable, so they attempt to arrive at the Enabled Gate block. The Enabled
Gate block is open during the entire simulation, except when the first entity
has not yet departed from the Infinite Server block. This logic is necessary

to prevent the second entity from jumping ahead of the first entity before

the warmup period is over.

The Path Combiner block merges the two entity paths, removing the
distinction between them. Subsequent processing depends on your
application; this model merely uses a queue-server pair as an example.

The plot below shows which path each entity takes during the simulation. The
plot shows that the first entity advances from the first (path=1) entity output
port of the Output Switch block to the Release Gate block, while subsequent
entities advance from the second (path=2) entity output port of the Output
Switch block to the Enabled Gate block.
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Role of Timeouts in SimEvents Models

You can limit the amount of time an entity spends during the simulation
on designated entity paths. Exceeding the limit causes a timeout event and
the entity is said to have ¢timed out. The duration of the time limit is called
the timeout interval.

You might use timeout events to

® Model a protocol that explicitly calls for timeouts.

* Implement special routing or other handling of entities that exceed a time
limit.

® Model entities that represent something perishable.

o Identify blocks in which entities wait too long.
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Basic Example Using Timeouts

The model below limits the time that each entity can spend in a queue, but
does not limit the time in the server. The queue immediately ejects any entity
that exceeds the time limit. For example, if each entity represents customers
trying to reach an operator in a telephone support call center, then the model
describes customers hanging up the telephone if they wait too long to reach an
operator. If customers reach an operator, they complete the call and do not
hang up prematurely.
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Each customer’s arrival at the Schedule Timeout block establishes a time
limit for that customer. Subsequent outcomes for that customer are as follows:

¢ Entity Times Out — If the customer is still in the queue when the
clock reaches the time limit, the customer hangs up without reaching an
operator. In generic terms, the entity times out, departs from the FIFO
Queue block via the TO port, and does not reach the server.

¢ Entity Advances to Server — If the customer gets beyond the queue
before the clock reaches the time limit, the customer decides not to hang up
and begins talking with the operator. In generic terms, if the entity arrives
at the Cancel Timeout block before the clock reaches the time limit, the
entity loses its potential to time out because the block cancels a pending
timeout event. The entity then advances to the server.
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Basic Procedure for Using Timeouts

A typical procedure for incorporating timeout events into your model is as

follows:
Step Description
Step 1 Designate the entity path on which you want to limit entities’
time.
Step 2 Specify the timeout interval.
Step 3 Specify destinations for timed-out entities.

The schematic below illustrates the procedure for a particular topology.
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Step 1: Designate the Entity Path

Designate the entity path on which you want to limit entities’ time. The path
can be linear, with exactly one initial block and one final block, or the path can
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be nonlinear, possibly with multiple initial or final blocks. Insert Schedule
Timeout and Cancel Timeout blocks as follows:

¢ Insert a Schedule Timeout block before each initial block in the path. The
Schedule Timeout block schedules a timeout event on the event calendar
whenever an entity arrives, that is, whenever an entity enters your
designated path.

¢ Insert a Cancel Timeout block after each final block in the path, except final
blocks that have no entity output port. The Cancel Timeout block removes
a timeout event from the event calendar whenever an entity arrives, that
is, whenever an entity leaves your designated path without having timed
out. If a final block in the path has no entity output port, then the block
automatically cancels the timeout event.

¢ Configure the Schedule Timeout and Cancel Timeout blocks with the same
Timeout tag parameter. The timeout tag is a name that distinguishes a
particular timeout event from other timeout events scheduled for different
times for the same entity.

For sample topologies, see “Defining Entity Paths on Which Timeouts Apply”
on page 8-7.

Step 2: Specify the Timeout Interval

Specify the timeout interval, that is, the maximum length of time that the
entity can spend on the designated entity path, by configuring the Schedule
Timeout block(s) you inserted:

¢ Ifthe interval is the same for all entities that arrive at that block, you can
use a parameter, attribute, or signal input. Indicate your choice using the
the Schedule Timeout block’s Timeout interval from parameter.

o If each entity stores its own timeout interval in an attribute, set
the Schedule Timeout block’s Timeout interval from parameter to
Attribute.

This method is preferable to using the Signal port ti option with a Get
Attribute block connected to the ti port; to learn why, see “Interleaving
of Block Operations” on page 14-8.
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If the timeout interval can vary based on dynamics in the model, set the
Schedule Timeout block’s Timeout interval from parameter to Signal
port ti. Connect a signal representing the timeout interval to the ti port.

If the ti signal is an event-based signal, be sure that its updates occur
before the entity arrives. For common problems and troubleshooting tips,
see “Unexpected Use of Old Value of Signal” on page 13-17.

Step 3: Specify Destinations for Timed-Out Entities

Specify where an entity goes if it times out during the simulation:

Enable the TO entity output port for some or all queues, servers, and
Output Switch blocks along the entity’s path, by selecting Enable TO port
for timed-out entities on the Timeout tab of the block’s dialog box. In
the case of the Output Switch block, you can select that option only under
certain configurations of the block; see its reference page for details.

If an entity times out while it is in a block possessing a TO port, the entity
departs using that port.

If an entity times out while it resides in a block that has no TO port,

then the Schedule Timeout block’s If entity has no destination when
timeout occurs parameter indicates whether the simulation halts with an
error or discards the entity while issuing a warning.

Queues, servers, and the Output Switch block are the only blocks that can
possess TO ports. For example, an entity cannot time out from gate or
attribute blocks.

For examples of ways to handle timed-out entities, see “Handling Entities
That Time Out” on page 8-10.
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Defining Entity Paths on Which Timeouts Apply

This section illustrates sample topologies for the entity paths on which
entities have limited time. Notice the relative positions of Schedule Timeout,
Cancel Timeout, and other blocks. The topics are

¢ “Linear Path for Timeouts” on page 8-7
¢ “Branched Path for Timeouts” on page 8-8
¢ “Feedback Path for Timeouts” on page 8-8

Linear Path for Timeouts

The next figure illustrates how to position Schedule Timeout and Cancel
Timeout blocks to limit the time on a linear entity path. The linear path

has exactly one initial block and one final block. A Schedule Timeout block
precedes the initial block (LIFO Queue) on the designated entity path, while a
Cancel Timeout block follows the final block (Single Server) on the designated
entity path.
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In this example, the Cancel Timeout block is optional because it is connected
to the Entity Sink block, which has no entity output ports. However, you
might want to include the Cancel Timeout block in your own models for clarity

or for its optional output signals.

Other examples of timeouts on linear entity paths include these:

8-7
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¢ “Basic Example Using Timeouts” on page 8-3

e “Example: Limiting the Time Until Service Completion” on page 8-14

Branched Path for Timeouts

In the example below, entities from two sources have limited lifespans.
Entities from a third source do not have limited lifespans.

Note When the Replicate block replicates an entity subject to a timeout, all
departing entities share the same expiration time; that is, the timeout events
corresponding to all departing entities share the same scheduled event time.
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Feedback Path for Timeouts

In the example below, entities have limited total time in a queue, whether

they travel directly from there to the server or loop back to the end of the

queue one or more times.
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Handling Entities That Time Out

Your requirements for handling entities that time out might depend on your
application or model. For example, you might want to

¢ Count timed-out entities to create metrics.

® Process timed-out entities specially.

¢ Discard timed-out entities without reacting to the timeout event in any

other way.

These topics describe and illustrate some common ways to handle timed-out
entities:

¢ “Techniques for Handling Timed-Out Entities” on page 8-10

e “Example: Dropped and Timed-Out Packets” on page 8-11

e “Example: Rerouting Timed-Out Entities to Expedite Handling” on page
8-12

Techniques for Handling Timed-Out Entities

To process or count timed-out entities, use one or more of the following
optional ports of the individual queues, servers, and Output Switch blocks in
the entities’ path. Parameters in the dialog boxes of the blocks let you enable
the optional ports.

Port Description Parameter that Enables
Port

Entity Timed-out entities depart via Enable TO port for

output this port, if present. timed-out entities on

port TO Timeout tab

Signal Number of entities that have = Number of entities timed

output timed out from the block since out on Statistics tab

port #to the start of the simulation.

To combine paths of timed-out entities from multiple blocks, use a Path
Combiner block.
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To count entities that time out from various blocks, add the various #to signals
using a discrete event subsystem. See the “Time-Driven and Event-Driven
Addition” demo for an example of adding event-based signals.

Note If an entity times out while it is in a block that has no TO port, then
the Schedule Timeout block’s If entity has no destination when timeout
occurs parameter indicates whether the simulation halts with an error or
discards the entity while issuing a warning.

Example: Dropped and Timed-Out Packets

This example modifies a portion of the “Shared Access Communications
Media” demonstration model, by making it possible for a packet to time
out while it is in a queue waiting for access to the communications media.
Below is a portion of the original model, representing one transmitter. The
transmitter drops any new packet that arrives while a packet is already
waiting in the queue, and the simulation counts dropped packets.

Original Transmitter

Below, a modified version of the model places a Schedule Timeout block
before the queue and a Cancel Timeout block after the queue. Furthermore,
the newly enabled TO entity output port of the FIFO Queue block connects
to a Path Combiner block. The Path Combiner block accepts packets that
the transmitter drops immediately on arrival, as well as packets that the
transmitter drops due to a timeout. The count of untransmitted packets now
reflects both scenarios.

8-11
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Transmitter Counting Dropped and Timed-Out Packets

Example: Rerouting Timed-Out Entities to Expedite
Handling

In this example, timeouts and a priority queue combine to expedite the
handling of requests that have waited for a long time in the queue. Requests
initially have priority 3, which is the least important priority level in this
model. If a request remains unprocessed for too long, it leaves the Priority
Queue block via the TO entity output port. Subsequent processing is as
follows:

® A priority-3 request becomes a priority-2 request, the timeout interval
becomes shorter, and the request reenters the priority queue. The queue
places this request ahead of all priority-3 requests already in the queue.

® A priority-2 request becomes a priority-1 request, the timeout interval
remains unchanged, and the request reenters the priority queue. The
queue places this request ahead of all priority-3 and priority-2 requests
already in the queue.

e A priority-1 request, having timed out three times, is discarded.
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Example: Limiting the Time Until Service Completion

In this example, two machines operate in series to process parts. The example
seeks to establish a time limit for the first machine’s completion of active
processing, not including any subsequent time that a part might need to wait
for the second machine to be ready.

A Schedule Timeout block establishes the time limit before the part waits for
the first machine. A Cancel Timeout block cancels the timeout event after
the first machine’s processing is complete. However, placing only a Cancel
Timeout block between the two machines, modeled here as Single Server
blocks, would not accomplish the goal because the part might time out while it
is blocked in the first Single Server block.

The solution is to use a queue to provide a waiting area for the part while it
waits for the second machine, and use a gate to prevent the first machine
from working on a new part until the part has successfully advanced to the
second machine. In the model below, parts always depart from the first Single
Server block immediately after the service is complete; as a result, the time
limit applies precisely to the service completion.
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The block labeled Open Gate at Start of Simulation is a Signal Latch block
that defines an initial condition of 1 using the technique described in
“Specifying Initial Conditions for Event-Based Signals” on page 3-27. Without
this initial condition, the gate would never open for the first part.
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Timing Issues in SimEvents Models

Most SimEvents models contain one or more inherently time-based blocks
from the Simulink libraries, in addition to inherently event-based blocks
from the SimEvents libraries. When time-based and event-based behavior
combine in one model, it is important to use correct modeling techniques to
ensure correct timing in the simulation.

When you combine time-based and event-based blocks, consider whether you
want the operation of a time-based block to depend only on time-oriented
considerations or whether you want the time-based block to respond to events.
The following example scenarios illustrate the difference:

¢ “Timing for the End of the Simulation” on page 9-2
¢ “Timing for a Statistical Computation” on page 9-3

¢ “Timing for Choosing a Port Using a Sequence” on page 9-4

The section “Role of Discrete Event Subsystems in SimEvents Models” on
page 9-7 introduces the discrete event subsystem, an important modeling
construct that you can use to make time-based blocks respond to events.

Timing for the End of the Simulation

Consider a queuing model in which you want to end the simulation precisely
when the number of entities in the queue first equals or exceeds some
threshold value. One way to model the constraint is to use the Compare To
Constant block to check whether the queue length is greater than or equal
to the threshold value and the Stop Simulation block to end the simulation
whenever the comparison is true.

e

Compare Stop Simulation
To Constant

The queue length is an optional output from the FIFO Queue block from the
signal output port labeled #n.
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#nf—

OUT p=

FIFO Queue

Time-Based Default Behavior

Connecting the #n signal directly to the signal input port of the Compare To
Constant block looks correct topologically. However, that would not cause

the simulation to stop at the exact moment when the #n signal reaches or
exceeds the threshold for the first time. Instead, it would cause the simulation
to stop upon the next time step for the time-based Compare To Constant

and Stop Simulation blocks, which could be at a later time. The #n signal
experiences a change in value based on an event, at a time that is unrelated
to the time-based simulation clock, whereas Simulink defaults to time-based
behavior for most blocks.

Achieving Correct Event-Based Behavior

The correct way to cause the simulation to stop at the exact moment when the
#n signal reaches or exceeds the threshold for the first time is to construct the
model so that the Compare To Constant and Stop Simulation blocks respond
to events, not the time-based simulation clock. Put these blocks inside a
discrete event subsystem that is executed at exactly those times when the
FIFO Queue block’s #n signal increases from one integer to another.

For details on this solution, see “Example: Ending the Simulation Upon an
Event” on page 9-21.

Timing for a Statistical Computation

Suppose that you want to compute the total length of time for which the queue
length equals or exceeds a threshold value during the simulation. A symbolic
expression for this computation is

FT) = [ Tynns(0rdt

where T is the total length of the simulation, #n is the instantaneous queue
length, the threshold is three entities, and [ is an indicator function defined by
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1 if#n@®) >3
0 otherwise

I#n23(t) ={

You can use the optional #n signal output port from the FIFO Queue block
to produce the queue length signal, and the Compare To Constant block to
implement the indicator function. You can connect the resulting signal to an
integrator block.

Time-Based Integration

The Integrator and Discrete-Time Integrator blocks in the Simulink libraries
are inherently time-based. In this example, you are integrating a signal that
experiences asynchronous discontinuities. A discrete-time integrator with an
explicit sample time yields incorrect results because a discontinuity might
occur between successive sample time values. A continuous-time integrator
can make the simulation clock adjust to detected discontinuities in the signal,
yet it is still possible for asynchronous discontinuities to go undetected by the
time-based simulation clock.

Some applications require time-based integration, but this application
requires that the integration respond to events that change the value of the
#n signal.

Achieving Correct Event-Based Behavior

To make the Compare To Constant and integrator blocks respond to events,
not the time-based simulation clock, you can put these blocks inside a discrete
event subsystem that is executed at exactly those times when the FIFO Queue
block’s #n signal increases from one integer to another. This solution causes
the simulation to compute the indicator function correctly, which results in a
correct value for the statistic.

For details on this solution, see “Example: Using Event-Based Timing for a
Statistical Computation” on page 9-20.

Timing for Choosing a Port Using a Sequence

Consider an Output Switch block that directs each arriving entity to one of
three entity output ports, depending on the value of an input signal.
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Suppose a Repeating Sequence Stair block generates the input signal by
cycling through the values 3, 2, and 1 throughout the simulation.

Y =

Repeating
Sequence
Stair

So far, this description does not indicate when the Repeating Sequence Stair
block changes its value. Here are some possibilities:

¢ It chooses a new value from the repeating sequence at regular time
intervals, which might be appropriate if the switch is intended to select
among three operators who work in mutually exclusive shifts in time.

You can specify the time interval in the Repeating Sequence Stair block’s
Sample time parameter.

¢ It chooses a new value from the repeating sequence whenever an entity
arrives at the Output Switch block, which might be appropriate if the
switch is intended to distribute a load fairly among three operators who
work in parallel.

To make the Repeating Sequence Stair block respond to entity advancement
events, not the time-based simulation clock, you can put these blocks
inside an appropriately configured function-call subsystem, as discussed in
“Creating Entity-Departure Subsystems” on page 9-27.

For details on this approach, see “Example: Using Entity-Based Timing
for Choosing a Port” on page 9-30.

These possibilities correspond to qualitatively different interpretations of the
model as well as quantitatively different results. If the Output Switch block
reports the index of its last selected entity output port (that is, the entity
output port through which the most recent entity departure occurred), then a
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plot of this statistic against time looks quite different depending on the timing
of the Repeating Sequence Stair block’s operation. Sample plots are below.

Departure Port Changes with Time
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Role of Discrete Event Subsystems in SimEvents Models

e “Purpose of Discrete Event Subsystems” on page 9-8
* “Processing Sequence for Events in Discrete Event Subsystems” on page 9-8
Given the questions raised in “Timing Issues in SimEvents Models” on page
9-2 about the response of time-based blocks to events, this section gives an
overview of discrete event subsystems and describes how you can use them to
ensure appropriate simulation timing. A discrete event subsystem
® Contains time-based blocks. Examples include

= Constant with a sample time of inf

= Sum or Relational Operator with a sample time of -1

= Stop Simulation

¢ Cannot contain blocks from the SimEvents libraries, except the Discrete
Event Inport, Discrete Event Outport, and Subsystem Configuration blocks

Note Ifyou want to put blocks that have entity ports into a subsystem as
a way to group related blocks or to make a large model more hierarchical,
then use an ordinary Subsystem block from the Simulink Ports &
Subsystems library. Alternatively, select one or more blocks and use the
Edit > Create Subsystem menu option. In either case, the use of a
subsystem does not affect the timing of the simulation but is merely a
graphical construct.

® Has two basic forms: a Discrete Event Subsystem block and an
appropriately configured Function-Call Subsystem block.

¢ [s executed in response to signal-based events that you specify in the
Discrete Event Inport blocks inside the Discrete Event Subsystem window,
or in response to function calls in the case of a function-call subsystem.

“Block execution” in this documentation is shorthand for “block methods
execution.” Methods are functions that Simulink uses to solve a model.
Blocks are made up of multiple methods. For details, see “Block Methods”
in the Simulink documentation.



9 Controlling Timing with Subsystems

Purpose of Discrete Event Subsystems

The purpose of a discrete event subsystem is to call the blocks in the
subsystem at the exact time of each qualifying event and not at times
suggested by the time-based simulation clock. This is an important change in
the semantics of the model, not merely an optimization.

Processing Sequence for Events in Discrete Event
Subsystems

When creating a discrete event subsystem, you might need to confirm or
manipulate the processing sequence for two or more events, such as

Signal-based events that execute a Discrete Event Subsystem block

Entity departures that execute an entity-departure subsystem

Function calls that execute a function-call subsystem

Updates in the values of signals that serve as inputs to any kind of discrete
event subsystem

Consider the schematic below involving a discrete event subsystem. Suppose
an entity departure from Block A, an entity arrival at Block C, and updates in
all of the signals occur at a given value of the simulation clock.

Din —
P QUT B

»|oin 4|—>Dout our ks

Block A Dot ..
p{Din A
. Block <

- Dint Discrete Event Subsystem
Black B
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Typically, the goal is to execute the subsystem

o After the entity departure from Block A, which produces a signal that is
an input to the subsystem.

e After both Block A and Block B update their output signals at that value of
the simulation clock.

Be especially aware of this if you clear the Execute subsystem upon
signal-based events option in a Discrete Event Inport block. Because the
subsystem uses the most recent value of the signal, you should make sure
that value is up to date, rather than a value from a previous call to the
block that creates the signal.

See “Example: Detecting Changes from Empty to Nonempty” on page 9-24
for an example in which the last-updated signal executes the subsystem.
See “Update Sequence for Output Signals” on page 3-18 to learn more
about when blocks update their output signals.

® Before the entity arrival at Block C, which uses an output signal from the
subsystem. “Example: Normalizing a Statistic to Use for Routing” on page
9-18 shows how an extra server block whose service time is zero can help
produce the correct processing sequence.

For details on processing sequences, see “Interleaving of Block Operations” on
page 14-8 and “Processing Sequence for Simultaneous Events” on page 2-11.
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Blocks Inside

Discrete Event Subsystems

The only blocks that are suitable for use in a discrete event subsystem are

Blocks having a Sample time parameter of -1, which indicates that the
sample time is inherited from the driving block.

Blocks that always inherit a sample time from the driving block, such as the
Bias block or the Unary Minus block. To determine whether a block in one

of the Simulink libraries inherits its sample time from the driving block, see
the “Characteristics” table near the end of the block’s online reference page.

Blocks whose outputs cannot change from their initial values during a
simulation. For more information, see “Constant Sample Time” in the
Simulink documentation.

Types of blocks that are not suitable for use in a discrete event subsystem
include

Continuous-time blocks

Discrete-time blocks with a Sample time parameter value that is positive
and finite

Blocks from the SimEvents libraries, except the Discrete Event Inport,
Discrete Event Outport, and Subsystem Configuration blocks. In particular,
a discrete event subsystem cannot contain blocks that possess entity ports
or nested Discrete Event Subsystem blocks.

In some cases, you can work around these restrictions by entering a Sample
time parameter value of -1 and/or by finding a discrete-time analogue of a
continuous-time block. For example, instead of using the continuous-time
Clock block, use the discrete-time Digital Clock block with a Sample time
parameter value of -1.
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Working with Discrete Event Subsystem Blocks

Building on the conceptual information in “Role of Discrete Event Subsystems
in SimEvents Models” on page 9-7, this section provides some practical
information to help you incorporate Discrete Event Subsystem blocks into
your SimEvents models. The topics are as follows:

e “Setting Up Signal-Based Discrete Event Subsystems” on page 9-11

¢ “Signal-Based Events That Control Discrete Event Subsystems” on page
9-14

For discrete event subsystems that respond to entity departures rather than
signal-based events, see “Creating Entity-Departure Subsystems” on page
9-27.

Setting Up Signal-Based Discrete Event Subsystems

To create discrete event subsystems that respond to signal-based events,
follow the procedure below using blocks in the SimEvents Ports and
Subsystems library.

Note You cannot create a signal-based discrete event subsystem by selecting
blocks and using Edit > Create Subsystem or by converting a time-based
subsystem into a discrete event subsystem. If your model already contains
the blocks you want to put into a discrete event subsystem, then you can
copy them into the subsystem window of a Discrete Event Subsystem block
while following the procedure below.

1 Drag the Discrete Event Subsystem block from the SimEvents Ports and
Subsystems library into your model. Initially, it shows one signal input port
Din and one signal output port Dout. Note that these are signal ports, not
entity ports, because the subsystem is designed to process signals rather
than entities. Furthermore, the signal input ports carry only real scalar
signals of data type double.

9-11
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Din Dot

Driscrete Event Subsystem

2 In the model window, double-click the Discrete Event Subsystem block to
open the subsystem it represents. Initially, the subsystem contains an
inport block connected to an outport block. Note that these are Discrete
Event Inport and Discrete Event Outport blocks, which are not the same as
the Inport and Outport blocks in the Simulink Ports & Subsystems library.
The subsystem also contains a Subsystem Configuration block, which you
should not delete.

Lo Mot Delete

Subsystem Configuration

Lin Lout

3 A discrete event subsystem must have at least one input that determines
when the subsystem executes. To change the number of inputs or outputs
to the subsystem, change the number of inport and outport blocks in the
subsystem window:

¢ If your subsystem requires an additional input or output, then copy and
paste an inport block or outport block in the subsystem window. (Copying
and pasting is different from duplicating the inport block, which is not
supported.) The figure below shows a pasted inport block.

Lo Mot Delete

Subsystem Configuration

Din Crout
Dind
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As a result, the subsystem block at the upper level of your model shows
the additional port as appropriate. The figure below shows an additional
input port on the subsystem block.

Din
Diourt
Dinl

Driscrete Event Subsystem

¢ If your subsystem needs no outputs, then select and delete the outport
block in the subsystem window. The figure below shows the absence of
outport blocks.

Lo Mot Delete

Subsystem Configuration

As a result, the subsystem block at the upper level of your model omits
the output port. The figure below shows the absence of output ports on
the subsystem block.

DOiin

[riscrete Event Subsystem

4 Drag other blocks into the subsystem window as appropriate to build the
subsystem. This step is similar to the process of building the top level of
your model, except that only certain types of blocks are suitable for use
inside the subsystem. See “Blocks Inside Discrete Event Subsystems” on
page 9-10 for details.

9-13
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5 Configure each of the Discrete Event Inport blocks to indicate when the
subsystem should be executed. Each inport block independently determines
criteria for executing the subsystem:

® To execute the subsystem when the signal corresponding to that
inport block exhibits a qualifying signal-based event, select Execute
subsystem upon signal-based events and use additional parameters
in the dialog box to describe the signal-based event.

® To have the subsystem use the most recent value of the signal
corresponding to that inport block without responding to signal-based
events in that signal, clear the Execute subsystem upon signal-based
events option.

x

— Dizorete Event Inport [mask]

Input port for a Dizcrete Event Subspstem block, This block can
conditionally execute the subsyztern upon signal-based events that
meet specified criteria,

—Parameters

[¥ Execute subsystem upon signal-based events

Type of zsighal-bazed event:l Sample time hit LI

[~ Resolve simultaneous signal updates according bo event prionity

Ok LCancel |

Signal-Based Events That Control Discrete Event
Subsystems

Blocks in a Discrete Event Subsystem are called in response to signal-based
events. Using the dialog box of the Discrete Event Inport blocks inside the
subsystem, you configure the subsystem so that it is executed in response to

® An updated value in an input signal, even if the updated value is the same
as the previous value

® A change in the value of an input signal

* A rising edge or falling edge in an input signal known as a trigger signal
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Note To call a subsystem upon an entity departure or upon a function
call, see “Creating Entity-Departure Subsystems” on page 9-27 or “Using
Function-Call Subsystems” on page 9-33, respectively.

Multiple-Input Subsystems

In a discrete event subsystem containing multiple Discrete Event Inport
blocks, the subsystem is executed when at least one of the inport blocks
detects a qualifying event. If N qualifying events occur at the same simulation
time (whether at the same or different Discrete Event Inport blocks), then the
subsystem executes N times and updates its output signals N times.

If you want one of the inport blocks to provide an input signal without
affecting the times at which the subsystem is executed, then clear the
Execute subsystem upon signal-based event check box on that inport
block. However, always select Execute subsystem upon signal-based
event for at least one inport block of the subsystem or else the subsystem
will never be executed.

Comparison of Event Types for Discrete Event Subsystems

Here are some points to keep in mind when deciding which type of
signal-based event should call your discrete event subsystem:

® Value changes are similar to sample time hits, except that a sample time
hit might cause a signal to be updated with the same value. If you expect
that calling the subsystem for repeated values of an input signal would
produce incorrect numerical results or would be wasteful, then execute
the subsystem upon changes in the signal value rather than upon every
sample time hit.

® The Discrete Event Subsystem block is similar to the ordinary Triggered
Subsystem block in the Simulink Ports & Subsystems library. However,
the Discrete Event Subsystem block can detect zero-duration values in
the input signal, which are signal values that do not persist for a positive
duration. (See “Multiple Simultaneous Updates of an Output Signal”
on page 3-21 for details on zero-duration values.) Unlike the Triggered
Subsystem block, the Discrete Event Subsystem block can detect and

9-15
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respond to a trigger edge formed by a zero-duration value, as well as
multiple edges in a single instant of time.

For more information about signal-based events, see “Types of Supported
Events” on page 2-2.
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Examples Using Discrete Event Subsystem Blocks

The topics listed below illustrate the use of the Discrete Event Subsystem

block.

Example: Comparing the Lengths of
Two Queues (p. 9-17)

Example: Normalizing a Statistic to
Use for Routing (p. 9-18)

Example: Using Event-Based
Timing for a Statistical Computation
(p. 9-20)

Example: Ending the Simulation
Upon an Event (p. 9-21)

Example: Sending Unrepeated Data
to the MATLAB Workspace (p. 9-22)

Example: Focusing on Events, Not
Values (p. 9-23)

Example: Detecting Changes from
Empty to Nonempty (p. 9-24)

Example: Logging Data About the
First Entity on a Path (p. 9-25)

Manipulating two event-based
signals having different timing

Performing event-oriented
computation for use in a subsequent
block

Integrating a signal having
asynchronous discontinuities

Responding immediately to
asynchronous discontinuities

Logging data only when a signal
changes

Counting changes in a signal’s value

Manipulating one signal when
another signal crosses zero

Focusing on the first entity that uses
a path

Example: Comparing the Lengths of Two Queues

In a model containing two queues, a logical comparison of the lengths of the
queues changes when either queue has an arrival or departure. A queue
block’s #n output signal is updated after each arrival if the queue is nonempty,
and after each departure. By contrast, the Relational Operator block is a
time-based block. The model below performs the comparison inside a discrete
event subsystem whose Discrete Event Inport blocks both have Type of
signal-based event set to Sample time hit. This way, the comparison
occurs whenever either #n signal is updated. If both queues update their

#n values at the same time on the simulation clock, then the discrete event

subsystem is called twice at that time.

9-17
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Example: Normalizing a Statistic to Use for Routing

Suppose you want to make a routing decision based on an output signal from
a SimEvents block, but you must manipulate or normalize the statistic so that
the routing block receives a value in the correct range. In the model shown
below, the util output signal from the Single Server block assumes real values
between 0 and 1, while the Output Switch block expects values of 1 or 2 in
the attribute of each arriving entity. The discrete event subsystem adds 1 to
the rounded utilization value.

The Discrete Event Inport block inside the subsystem has Type of
signal-based event set to Sample time hit so that the computation occurs
whenever the server block updates the value of the utilization signal. The
subsystem’s configuration and the presence of the Delay of Length Zero block
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ensure that the attribute assignment and the routing decision always use the
most up-to-date value of the util signal.

At a time instant at which an entity departs from the Single Server block, the
sequence of operations is as follows:

1 The entity advances from the Single Server block to the block labeled Delay
of Length Zero, which is merely a single server whose service time is zero.

2 The Single Server block updates its util output signal.

The fact that this occurs after the entity has already departed from the
Single Server block and arrived at a storage block is the reason for the
Delay of Length Zero block. See “Interleaving of Block Operations” on page
14-8 for details.

3 The subsystem reacts to the updated value of util by computing an updated
value at the Al input port of the Set Attribute block.

4 The entity advances from the Delay of Length Zero block to the Set
Attribute block, which uses an up-to-date signal to determine the attribute
value.

5 The entity advances from the Set Attribute block to the Output Switch
block, which uses the entity’s attribute value to determine the routing
behavior.

_I—b Din Diout
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Example: Using Event-Based Timing for a Statistical
Computation

This example performs the computation described in “Timing for a Statistical
Computation” on page 9-3, to find the total length of time during the
simulation that a queue’s length equals or exceeds a threshold value.

In the model shown below, the threshold is three entities. The Compare To
Constant block produces an indicator function for that threshold. The Discrete
Time Integrator block, configured to have an inherited sample time rather
than an explicit discrete sample time, computes the area under the curve of
the indicator function, that is, the total amount of time that the input to the
subsystem exceeds the threshold. The Discrete Event Inport block inside the
subsystem has Type of signal-based event set to Sample time hit so
that the computation occurs whenever the queue block updates the value of
the queue length signal. The subsystem’s configuration ensures that the
comparison block does not miss any asynchronous discontinuities in the queue
length signal and that the integrator processes the correct indicator function.
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Note In this example, it is important to use a discrete-time integrator with
an inherited sample time instead of a continuous-time integrator. See “Blocks
Inside Discrete Event Subsystems” on page 9-10 for more information.

Example: Ending the Simulation Upon an Event

This example ends the simulation as described in “Timing for the End of
the Simulation” on page 9-2, precisely when the number of entities in a
queue first equals or exceeds a threshold. In the model shown below, the
Compare To Constant and Stop Simulation blocks are in a discrete event
subsystem. The Discrete Event Inport block inside the subsystem has Type
of signal-based event set to Sample time hit so that Simulink calls the
subsystem at exactly those times when the FIFO Queue block updates the
value of the queue length signal.

Din

Discrete Event Subsystem

#n
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Example: Sending Unrepeated Data to the MATLAB
Workspace

Suppose you want to log statistics to the MATLAB workspace, but you want to
save simulation time and memory by capturing only values that are relevant
to you. You might want to suppress repeated values, for example, or capture
only values that represent an increase from the previous value.

In the model shown below, the discrete event subsystem contains a To
Workspace block whose Save format parameter is set to Structure With
Time. The Discrete Event Inport block inside the subsystem has Type of
signal-based event set to Change in signal and Type of change in
signal value set to Either, so that the MATLAB workspace variable tells you
when the Output Switch block selects an entity output port that differs from
the previously selected one. If, for example, the switch is configured to select
the first port that is not blocked, then a change in the port selection indicates
a change in the state of the simulation (that is, a previously blocked port has
become unblocked, or a port becomes blocked that previously was not).

Din
Discrete Event Subsystem
last

» OUTH
S TV g
+ OUTZ
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Example: Focusing on Events, Not Values

The example below counts the number of times a signal changes its value,
ignoring times at which the signal might be updated with the same value.
The discrete event subsystem contains a Counter Free-Running block with an
inherited sample time. Because the Counter Free-Running counts starting
from 0, the subsystem also adds 1 to the counter output.

The Discrete Event Inport block inside the subsystem has Type of
signal-based event set to Change in signal and Type of change in
signal value set to Either, so that the subsystem is executed each time the
input signal changes its value. In contrast to other subsystem examples, this
subsystem does not use the signal’s specific values for computations; the input
signal is connected to a Terminator block inside the subsystem. The counter’s
value is what the subsystem sends to the MATLAB workspace.

In this example, avoiding extraneous calls to the subsystem is not merely a
time-saver or memory-saver, but rather a strategy for producing the correct
results.
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Example: Detecting Changes from Empty to
Nonempty

The example below executes a subsystem only when an N-server changes
from empty to nonempty, or vice versa, but not when the number of entities
in the server remains constant or changes between two nonzero values. In
the model, the N-Server block produces a #n signal that indicates the number
of entities in the server. The server is empty if and only if the #n signal is
zero. Connected to the #n signal is a Discrete Event Inport block inside

the subsystem that has Type of signal-based event set to Trigger and
Trigger type set to Either, so that the subsystem is executed each time the
#n signal changes from zero to one or from one to zero. Connected to the

w signal is another Discrete Event Inport block inside the subsystem; this



Examples Using Discrete Event Subsystem Blocks

block has Execute subsystem upon signal-based events cleared so that
this signal does not cause additional calls to the subsystem; the subsystem
merely uses the most recent value of the w signal whenever the #n signal
exhibits a trigger edge.

Note Because the N-Server block updates the w signal before updating the
#n signal, both signals are up to date when the trigger edge occurs.

»| Din

H Dot ——
P
™

Oin1

auT »—I Discrete Event Subsystem

MN-Semer

If the server changes instantaneously from empty to nonempty and back to
empty, then the subsystem is called exactly twice in the same time instant,
once for the rising edge and once for the subsequent falling edge. The
Triggered Subsystem block might not detect the edges that the zero-duration
value of 1 creates, and thus might not call the subsystem at that time instant.
This is why the Discrete Event Subsystem block is more appropriate for this
application.

Example: Logging Data About the First Entity on a
Path

Suppose your model includes a particular entity path that entities rarely use,
and you want to record certain attributes of the first entity that takes that
path during the simulation. You can send the attribute values to the MATLAB
workspace by using a To Workspace block inside a discrete event subsystem.

In the example below, the #d output signal from the Get Attribute block
indicates how many entities have departed from the block. The other outputs
from that block are the attribute values that you want to send to the MATLAB
workspace. Connected to the #d signal is a Discrete Event Inport block inside
the subsystem that has Type of signal-based event set to Trigger, so
that the subsystem is executed each time the #d signal changes from zero

to one. Connected to the A1 and A2 signals are additional Discrete Event
Inport blocks inside the subsystem. These blocks have Execute subsystem
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upon signal-based events cleared so that the attribute signals do not cause
additional calls to the subsystem; the subsystem merely uses the most recent
value of the Al and A2 signals whenever the #d signal exhibits a trigger edge.

The To Workspace block inside the subsystem does not actually create the
variables in the MATLAB workspace until the simulation ends, but the
variable contents are correct because the timing of the subsystem corresponds
to the time of the #d signal’s first positive value.

Note Because the Get Attribute block updates the Al and A2 signals before
updating the #d signal, all signals are up to date when the trigger edge occurs.

Entity Sink1
R 1N e s
Entity Sink
LEUT 2d »[0in
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Cutput Switch1 A2 - DinZ
auT Discrete Event Subsystem
et Attribute
= IN- i
Entity Sink2



Creating Entity-Departure Subsystems

Creating Entity-Departure Subsystems

® “Accessing Blocks for Entity-Departure Subsystems” on page 9-28
e “Setting Up Entity-Departure Subsystems” on page 9-29

You can create a subsystem that Simulink calls only when an entity
departs from a particular block in your model. The figure below shows a
prototype, although most ports are not yet connected. The prototype uses the
Entity-Based Function-Call Event Generator block to generate a function call
when an entity departs. The function call executes the subsystem.

One Function-Call Signal

F Ml — - — - —,
BN Ay ¥
OuT g functiond)
In1 1
Entity-Based
Function-Call -
Ewent &enerator Function-Call
Subsystem

Two Function-Call Signals

f 11—
BN 1l STt
W OUT g +
' functioni)
Entity-Based | In1 ot
Function-Call I
Ewent Generatort . Function-Call
| Subsystemd
f - -
BN o
W OUT g
Entity-Based
Function-Call

Ewent Generator2

Prototype of Entity-Departure Subsystems
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Accessing Blocks for Entity-Departure Subsystems

To create discrete event subsystems that respond to entity departures, use
some or all of the blocks listed below.

Block

Library Location

Purpose

Entity-Based
Function-Call Event
Generator

Event Generators
library in SimEvents

Entity Departure Event
to Function-Call Event

Event Translation
library in SimEvents

Issues a function call
corresponding to each
entity departure

Mux

Signal Routing library
in Simulink

Combines multiple
function-call signals
into a single
function-call signal,
if needed

Function-Call
Subsystem

Ports & Subsystems
library in Simulink

Contains blocks to
execute upon each
function call. You
must configure the
subsystem to propagate
its execution context, as
described in “Creating
Entity-Departure
Subsystems” on page
9-27.

Inport

Outport

Ports & Subsystems
library in Simulink

Links a subsystem to
its parent system
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Setting Up Entity-Departure Subsystems

To create subsystems that respond to entity departures, follow the procedure
below.

1 Insert and configure the Function-Call Subsystem block as described in
“Setting Up Function-Call Subsystems in SimEvents Models” on page 9-34.

2 Insert one or more of these blocks into your model. The first is easier to
use but less flexible.

¢ Entity-Based Function-Call Event Generator
¢ Entity Departure Event to Function-Call Event

Note You can configure these blocks to issue a function call either before or
after the entity departs. In most situations, the After entity departure
option is more appropriate. The Before entity departure option can

be problematic if a subsystem is executed too soon, but is an appropriate
choice in some situations.

3 Connect the newly inserted blocks to indicate which entity departures
should call the subsystem. If entity departures from multiple blocks should
call the subsystem, then combine multiple function-call signals using a
Mux block.
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Examples Using Entity-Departure Subsystems

The topics listed below illustrate the use of entity-departure subsystems.

Example: Using Entity-Based Calling a signal source when an
Timing for Choosing a Port (p. 9-30)  entity departs from a block

Example: Performing a Computation Detecting departures from multiple
on Selected Entity Paths (p. 9-32) blocks

Example: Using Entity-Based Timing for Choosing
a Port

This example performs the entity-based routing described in “Timing for
Choosing a Port Using a Sequence” on page 9-4. The example routes entities
by establishing a sequence of paths and then choosing a number from that
sequence for each entity that arrives at the routing block. This is the situation
shown in the figure Departure Port Changes with Each Entity on page 9-6.

In the model shown below, the Function-Call Subsystem block contains a
Repeating Sequence Stair block whose Sample time parameter is set to -1
(inherited). Any entity that arrives at the Output Switch block previously
departed from the Entity Departure Event to Function-Call Event block.
The function-call output from that block caused the subsystem to produce
a number that indicates which entity output port the entity uses when it
departs from the Output Switch block.

If you used the Repeating Sequence Stair block with an explicit sample time
and not inside a subsystem, then the routing behavior would depend on the
clock, as shown in the figure Departure Port Changes with Time on page
9-6, rather than on entity departures.
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The Entity Departure Event to Function-Call Event block, which issues
function calls after entity departures, appears before the Single Server block
instead of between the Single Server block and the Output Switch block. This
placement ensures that when the function call executes the subsystem, the
entity has not yet arrived at the switch but rather is stored in the server.
Possible alternative approaches are to

¢ Place the Entity Departure Event to Function-Call Event block, followed
by an extra server, between the Single Server block and the switch.
This approach is similar to the use of the Delay of Length Zero block in
“Example: Normalizing a Statistic to Use for Routing” on page 9-18.

¢ Configure the Entity Departure Event to Function-Call Event block to
issue function calls before entity departures and place the block between
the server and the switch. Issuing function calls before departures does not
lead to causality problems in this particular example.
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Example: Performing a Computation on Selected
Entity Paths

The model below performs a computation whenever an entity arrives at the
IN2 or IN3 entity input port of a Path Combiner block, but not when an
entity arrives at the IN1 port of the Path Combiner block. The computation
occurs inside the Function-Call Subsystem block. When an entity departs
from specific blocks that precede the Path Combiner block, the corresponding
Entity-Based Function-Call Event Generator block issues a function call. A
Mux block combines the two function-call signals, creating a function-call
signal that calls the subsystem. If both event generators issue a function
call at the same value of the simulation clock, then the subsystem is called
twice at that time.
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Using Function-Call Subsystems

e “Use Cases for Function-Call Subsystems” on page 9-33
e “Setting Up Function-Call Subsystems in SimEvents Models” on page 9-34

The most general kind of discrete event subsystem is an appropriately
configured Function-Call Subsystem block, where the appropriate
configuration requires selecting the Propagate execution context across
subsystem boundary option as a subsystem property. You can execute such
a subsystem at the exact time of an input function call, whether the function
call comes from a Stateflow block, a block in the Event Generators library, a
block in the Event Translation library, or the Function-Call Generator block.

Use Cases for Function-Call Subsystems

The Discrete Event Subsystem block and the entity-departure subsystems
discussed in “Working with Discrete Event Subsystem Blocks” on page 9-11
and “Creating Entity-Departure Subsystems” on page 9-27, respectively, are
special cases of the Function-Call Subsystem block configured as a discrete
event subsystem. You might require the additional flexibility provided by the
Function-Call Subsystem approach if you want to execute the subsystem upon

¢ The logical OR of multiple event occurrences, where the events can come
from any combination of a Stateflow block, another source of function calls,
or a signal-based event. To do this, use the Mux block to combine multiple
function-call signals into one function-call signal.

For an example, see “Example: Executing a Subsystem Based on Multiple
Types of Events” on page 2-50.

¢ The logical AND of an event occurrence and some underlying condition. To
do this, use blocks in the Event Translation library and select Suppress
function call f1 if enable signal el is not positive (or the similar
option for the f2 and e2 ports).

For an example, see “Example: Detecting Changes in the Last-Updated
Signal” on page 3-18.

9-33



9 Controlling Timing with Subsystems

9-34

Setting Up Function-Call Subsystems in SimEvents
Models

To use a Function-Call Subsystem block in a model that uses event-based
blocks or event-based signals, follow the procedure below.

Note The selection of the Propagate execution context across
subsystem boundary option is particularly important for ensuring that the
subsystem executes at the correct times.

1 Drag the Function-Call Subsystem block from the Simulink Ports &
Subsystems library into your model. Initially, it shows one signal input port
Inl, one output signal port Outl, and a control port function(). Note that
these are signal ports, not entity ports, because the subsystem is designed
to process signals rather than entities.

2 Select the subsystem block and choose Edit > Subsystem Parameters
from the model window’s menu bar.

3 In the dialog box that opens, select Propagate execution context across
subsystem boundary and click OK.
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4 In the model window, double-click the Function-Call Subsystem block to
open the subsystem it represents. Initially, the subsystem contains an
Inport block connected to an Outport block. Note that these are from the
Simulink Ports & Subsystems library, and are not the same as the Discrete
Event Inport and Discrete Event Outport blocks in the SimEvents Ports and
Subsystems library. The subsystem also contains a block labeled “function.”

5 To change the number of inputs or outputs to the subsystem, change the
number of Inport and Outport blocks in the subsystem window. You can
copy, paste, and delete these blocks.

6 Drag other blocks into the subsystem window as appropriate to build the
subsystem. This step is similar to the process of building the top level
of hierarchy in your model, except that only certain types of blocks are
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suitable for use inside the subsystem. See “Blocks Inside Discrete Event
Subsystems” on page 9-10 for details.
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Choosing and Configuring Plotting Blocks

SimEvents provides scope blocks that help you visualize data from your
simulation. When you insert a scope block into your model, it creates a plot as
the simulation runs. This section describes capabilities of the scope blocks in
these topics:

® “Sources of Data for Plotting” on page 10-2

¢ “Inserting and Connecting Scope Blocks” on page 10-3

® “Connections Among Points in Plots” on page 10-4

® “Varying Axis Limits Automatically” on page 10-5

e “Caching Data in Scopes” on page 10-6

e “Examples Using Scope Blocks” on page 10-6

Sources of Data for Plotting

The table below indicates the kinds of data you can plot using various
combinations of blocks and parameter values. To view or set the parameters,
open the dialog box using the Parameters toolbar button in the plot window.

Data Block Parameter

Scalar signal vs. time Signal Scope X value from = Event time
Scalar signal values without Signal Scope X value from = Index
regard to time

Two scalar signals (X-Y plot) X-Y Signal Scope

Attribute vs. time Attribute Scope X value from = Event time
Attribute values without regard | Attribute Scope X value from = Index

to time

Two attributes of same entity X-Y Attribute Scope

(X-Y plot)
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Data

Block

Parameter

Attribute vs. scalar signal

Scalar signal vs. attribute

Get Attribute
block to assign the
attribute value to a
signal; followed by
X-Y Signal Scope

Number of entity arrivals per
time instant

Instantaneous
Entity Counting
Scope

Number of events per time
instant

Instantaneous Event
Counting Scope

The Signal Scope and X-Y Signal Scope blocks are particularly appropriate for
data arising from discrete-event simulations because the plots can include
zero-duration values. That is, the plots can include multiple values of the
signal at a given time. By contrast, the Scope block in the Simulink Sources
library plots at most one value of the signal at each time.

Inserting and Connecting Scope Blocks

The scope blocks reside in the SimEvents Sinks library. The table below
indicates the input ports on each scope block.

Block

Input Port(s)

Port Description

Signal Scope

One signal input port

Signal representing the data to plot

X-Y Signal Scope

Two signal input ports

Signals representing the data to plot

Attribute Scope

One entity input port

Entities containing the attribute
value to plot

X-Y Attribute Scope

One entity input port

Entities containing the attribute
values to plot

Instantaneous Entity Counting
Scope

One entity input port

Entities whose arrivals the block
counts

Instantaneous Event Counting
Scope

One signal input port

Signal whose signal-based events or

function calls the block counts
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The figure below shows some typical arrangements of scope blocks in a model.
Notice that the blocks that have entity input ports can have optional entity
output ports, and that signal lines can branch whereas entity connection

lines cannot.
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Connections Among Points in Plots

You can configure certain scope blocks to determine if and how it connects the
points that it plots. The table below indicates the options. To view or change
the parameter settings, open the dialog box using the Parameters toolbar
button in the plot window.

Attribute Scope

Connection Characteristics

Setting

Sample Plot

Stairstep across, then up or down.
Also known as a zero-order hold.

Plot type = Stair in the
block’s dialog box

Vertical line from horizontal axis to
point. No connection with previous
or next plotted point. Also known
as a stem plot.

Plot type = Stem in the
block’s dialog box




Choosing and Configuring Plotting Blocks

Connection Characteristics Setting

Sample Plot

Single line segment from point to Plot type = Continuous in
point. Also known as a first-order | the block’s dialog box

hold.

No connection with other points or | Style >

with axis. Also known as a scatter | plot window

plot.

Line > None in the

Note Ifno initial condition, data value, or arriving entity indicates a value to
plot at T=0, then the plot window does not show a point at T=0 and does not
connect the first plotted point to the T=0 edge of the plot.

Varying Axis Limits Automatically

Using parameters on the Axes tab of the dialog box of scope blocks, you set
the initial limits for the horizontal and vertical axes of the plot. Also, the If X
value is beyond limit and If Y value is beyond limit parameters let you
choose how the block responds if a point does not fit within the current axis
limits. Choices are in the table below.

Option

Description

Stretch axis limits

Maintain one limit while doubling the size of the
displayed interval (without changing the size of
the containing plot window)

Keep axis limits
unchanged

Maintain both limits, which means that points
outside the limits do not appear

Shift axis limits

Maintain the size of the displayed interval while
changing both limits
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Other operations can still affect axis limits, such as the autoscale, zoom, and
pan features.

To store the current limits of both axes for the next simulation, select
Axes > Save axes limits from the plot window menu.

Caching Data in Scopes

The Data History tab of the dialog box of scope blocks lets you balance
data visibility with simulation efficiency. Parameters on the Data History
tab determine how how much data the blocks cache during the simulation.
Caching data lets you view it later, even if the scope is closed during part
or all of the simulation. Caching less or no data accelerates the simulation
and uses less memory.

If you set the Store data when scope is closed parameter to Limited, you
might see uncached data points disappear when the simulation ends or if you
interact with the plot while the simulation is paused.

Examples Using Scope Blocks
The following examples use scope blocks to create different kinds of plots:

Example Description

“Plotting the Pending-Entity Signal” | Stairstep and continuous plots of
and “Observations from Plots” in the | statistical signals
getting started documentation

“Example: Round-Robin Approach Stem plot of data from an attribute
to Choosing Inputs” in the getting
started documentation

“Example: Using Servers in Shifts” | Unconnected plot of a signal using
on page 6-11 dots

“Example: Setting Attributes” on Stairstep plots of data from
page 1-14 attributes using Attribute Scope
blocks as sinks
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Example

Description

“Example: Synchronizing Service
Start Times with the Clock” on page
7-6

Stem plots that count entities using
Instantaneous Entity Counting
Scope blocks with entity output ports

X-Y Signal Scope reference page

Continuous plot of two signals

X-Y Attribute Scope reference page

Unconnected plot of two attributes
using x’s as plotting markers
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Features of Plot Window

10-8

After a scope block opens its plot window, you can modify several aspects of
the plot by using the plot window’s menu and toolbar:

* Axes > Autoscale resizes both axes to fit the range of the data plus some
buffer space.

® The Zoom In and Zoom Out toolbar buttons change the axes as described in
the MATLAB documentation about zooming in 2-D views.

¢ The Pan toolbar button moves your view of a plot.

¢ The Style menu lets you change the line type, marker type, and color of
the plot. (You can also select Style > Line > None to create a plot of
unconnected points.) Your changes are saved when you save the model.

* Axes > Save axes limits updates the Initial X axis lower limit, Initial
X axis upper limit, Initial Y axis lower limit, and Initial Y axis upper
limit parameters on the Axes tab of the block’s dialog box to reflect the
current limits on the horizontal and vertical axes.

* Axes > Save position updates the Position parameter on the Figure tab
of the block’s dialog box to reflect the window’s current position and size.

Note When a menu option duplicates the behavior of a parameter in the
block’s dialog box, selecting the menu option replaces the corresponding
parameter value in the dialog. You can still edit the parameter values in
the dialog manually. An example of this is the Show grid menu option and
dialog box parameter.

The Save Figure toolbar button lets you save the current state of the plot to a
FIG-file. You can reload the file in a different MATLAB session. Reloading
the file creates a plot that is not associated with the original scope block and
that does not offer the same menu and toolbar options as in the original plot
window.
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Using Plots for Troubleshooting

Typical ways to use plotting blocks in the SimEvents Sinks library to
troubleshoot problems are described in the table below.

Technique

Example

Check when an entity departs from
the block. To do this, plot a block’s
#d output signal.

“Example: Plotting Entity
Departures to Verify Timing”
on page 10-10

Check whether operations such as
service completion or routing are
occurring as you expect. To do this,
plot statistical output signals such
as pe or last, if applicable.

“Example: Using Servers in Shifts”
on page 6-11 and “Timing for
Choosing a Port Using a Sequence”
on page 9-4

Check whether a block uses a
control signal as you expect. To

do this, plot input signals such

as port selection, service time, or
intergeneration time, and compare
the values with observations of how
the corresponding blocks use those
signals.

“Example: Race Conditions at a
Switch” on page 2-25

Check how long entities spend in a
region of the model. To do this, plot
the output of a Read Timer block.

“Example: M/M/5 Queuing System”
on page 4-13

Check whether events you expect
to be simultaneous are, in fact,
simultaneous. To do this, use the
Instantaneous Entity Counting
Scope or Instantaneous Event
Counting Scope block.

“Example: Counting Simultaneous
Departures from a Server” on page
1-21 and “Example: Plotting Event
Counts to Check for Simultaneity”
on page 10-14
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Example: Plotting Entity Departures to Verify Timing

® “Model Exhibiting Correct Timing” on page 10-10
® “Model Exhibiting Latency” on page 10-11

The example below compares two methods of opening a gate at a random
time and leaving the gate open for the rest of the simulation. The Signal
Scope block lets you see when the gate opens, to check whether the timing is
what you expected. One method exhibits latency in the gate’s opening. For a
nonvisual way to determine when entities depart from the gate, see “Viewing
Entity Locations” on page 13-9.

Model Exhibiting Correct Timing

The model below views the random opening of the gate as a discrete event,
and models it via an entity departure from a server at a random time. The
Time-Based Entity Generator block generates exactly one entity, at T=0. The
Single Server block delays the entity for the amount of time indicated by the
Uniform Random Number block, 3.531 seconds in this case. At T=3.531, the
entity arrives at the Entity Sink block. This time is exactly when the sink
block’s #a signal changes from 0 to 1, which in turn causes the gate to open.
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By using the zoom feature of the scope, you can compare the time at which
entities depart from the Enabled Gate block with the random time shown
on the Display block in the model.

Departures from Gate
15
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Model Exhibiting Latency

The model below uses the Variable Time Delay block to create a step signal
that is intended to change from O to 1 at a random time. However, because
the Variable Time Delay block is time-based, it updates its output signal at
times dictated by the time-based simulation clock. The step signal does not
actually change from 0 to 1 until the next sample time hit after the time
indicated by the random number. This is the intentional documented behavior
of this time-based block.
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By using the zoom feature of the scope, you can see that entities depart from
the Enabled Gate block later than the random time shown on the Display
block in the model.
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Example: Plotting Entity Departures to Verify Timing
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Example: Plotting Event Counts to Check for Simultaneity

10-14

The example below suggests how to use the Instantaneous Event Counting
Scope block to determine whether events you want to be simultaneous are
truly simultaneous.

Suppose you want two entity generators with periods of 1 and 1/3 to create
simultaneous entity departures every second, so that event priorities
determine which entity arrives at the queue first. By counting events at each
value of time and checking when the count is 2, you can confirm that two
entity generation events are truly simultaneous.

The model below uses two Event-Based Entity Generator blocks receiving
the same input signal. You can see from the plot that simultaneous events
occur every second, as desired.
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Example: Plotting Event Counts to Check for Simultaneity

Simultaneous Events Every Second
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Although this example uses the Instantaneous Event Counting Scope to plot a
#d signal, you can alternatively use the Instantaneous Entity Counting Scope
to count entities departing from the Path Combiner block.

10-15



'IO Plotting Data

Comparison with Time-Based Plotting Tools

Simulink offers plotting tools designed for signals in time-based simulations.
Examples are the Scope block, XY Graph block, Signal & Scope Manager,
and simplot function. In general, you should plot event-based signals using
event-based tools such as blocks in the SimEvents Sinks library. Time-based
plotting tools plot at most one value at each time, whereas blocks in the
SimEvents Sinks library can include zero-duration values. Time-based
plotting tools might also display the event-based signal with some latency.

Compare the two figures below, which depict the same data, when you consider
which plotting tools are more appropriate in your event-based simulations.

Mumber of Entities in Server

7 N D BV DN
0 2 1 : 5 10

Time

Discrete-Event Plot of Number of Entities in a Server
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Time-Based Plot of Number of Entities in a Server
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Role of Statistics in Discrete-Event Simulation

Most SimEvents blocks are capable of producing one or more statistical output
signals. You can use these signals to gather data from the simulation or to
influence the dynamics of the simulation. This section gives an overview of
both purposes, in these topics:

o “Statistics for Data Analysis” on page 11-2

o “Statistics for Run-Time Control” on page 11-3

The rest of this chapter illustrates some modeling and analysis techniques
that you can use with SimEvents. However, a detailed treatment of statistical
analysis is well beyond the scope of this User’s Guide; see the works listed

in “Selected Bibliography” for more information.

Statistics for Data Analysis

Often, the purpose of creating a discrete-event simulation is to improve
understanding of the underlying system being modeled or to use simulation
results to help make decisions about the underlying system. Numerical
results gathered during simulation can be important tools.

For example, if you simulate the operation and maintenance of equipment on
an assembly line, then you might use the computed production and defect
rates to help decide whether to change your maintenance schedule. As
another example, if you simulate a communication bus under varying bus
loads, then you might use computed average delays in high- or low-priority
messages to help determine whether a proposed architecture is viable.

Just as you decide how to design a simulation model that adequately describes
the underlying system, you decide how to design the statistical measures that
you will use to learn about the system. Some questions to consider are

® Which statistics are meaningful for your investigation or decision?
For example, if you are trying to maximize efficiency, then what is an
appropriate measure of efficiency in your system? As another example,
does a mean give the best performance measure for your system, or is it
also worthwhile to consider the proportion of samples in a given interval?
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®* How can you compute the desired statistics? For example, do you need to
ignore any transient effects, does the choice of initial conditions matter, and
what stopping criteria are appropriate for the simulation?

¢ To ensure sufficient confidence in the result, how many replications of the
simulation do you need? One simulation run, no matter how long, is still a
single sample and probably inadequate for valid statistical analysis.

For details concerning statistical analysis and variance reduction
techniques, see the works [7], [4], [1], and [2] listed in “Selected
Bibliography” in the getting started documentation.

Statistics for Run-Time Control

Some systems rely on statistics to influence the dynamics. For example, a
queuing system with discouraged arrivals has a feedback loop that adjusts
the arrival rate throughout the simulation based on statistics reported by the
queue and server, as illustrated in the sedemo_discouragearrival demo
model.

When you create simulations that use statistical signals to control the
dynamics, you must have access to the current values of the statistics at key
times throughout the simulation, not just at the end of the simulation. Some
questions to consider while designing your model are

® Which statistics are meaningful, and how should they influence the
dynamics of the system?

® How can you compute the desired statistics at the right times during
the simulation? It is important to understand when SimEvents blocks
update each of their statistical outputs and when other blocks can access
the updated values. This topic is discussed in Chapter 3, “Working with
Signals”.

® Do you need to account for initial conditions or extreme values in any
special way? For example, if your control logic involves the number of
entities in a queue, then be sure that the logic is sound even when the
queue is empty or full.

¢ Will small perturbations result in large changes in the system’s behavior?
When using statistics to control the model, you might want to monitor those
statistics or other statistics to check whether the system is undesirably
sensitive to perturbations.
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Accessing Statistics from SimEvents Blocks

Most SimEvents blocks can produce one or more statistical outputs. To see
which statistics are available, open the block’s dialog box. In most cases, the
list of available statistics appears on the Statistics tab of the dialog box.
For example, the figure below shows the Statistics tab of the FIFO Queue
block’s dialog box.

7] Block Parameters: FIFO Quene |

|VFIFD Hueue [mask)

Store entities in firgt-in-firet-out zequence for an undetermined length of time. The
Capacity parameter iz the number of entities the queus can hold,

FIFD Queue |Timeout |

Murmber of entitiez departed, th:l:l O

Murmber of entitiez in queue, ﬂn:l [l

Statuz of pending entity departure, pe:l O

Average wait, w:l O

Average queue length, Ien:l O

Lol Lef Lo L] Lef Lo

Murmber of entities timed out, ﬂtn:l [}

[n]4 I Cancel Help | Apply |

In cases where the dialog box has no Statistics tab, such as the Entity Sink
block, the dialog box has so few parameters that the statistical options are
straightforward to locate.

To use one or more statistics, see the options described in these sections:

® “Accessing Statistics Throughout the Simulation” on page 11-4

® “Accessing Statistics When Stopping or Pausing Simulation” on page 11-6

Accessing Statistics Throughout the Simulation

To configure a block so that it outputs an available statistic throughout the
simulation, set the corresponding parameter in the dialog box to On. After you
apply the change, the block has a signal output port corresponding to that



Accessing Statistics from SimEvents Blocks

statistic. The figure below shows the dialog box and icon for the FIFO Queue
block after the average wait statistic is enabled.

7 Block Parameters: FIFO Queue

FIFO Queue [mazgk] [link]

x|

Store entities in first-in-first-out sequence for an undetermined length of time. The

Capacity parameter iz the number of entities the queue can hold.

FIFO Queus | Statistics |

Mumber of entities departed, th:l:l ff

Mumber of entities in queue, #n:l (e

Status of pending entity departure, pe:l 0if

e P W
B I I
. oUuT

FIFQ Queue

Signal output port
for statistic

'

Axerage wait, w:l On

Axerage queue length, Ien:l ff

ok Cancel Help

....................................

Statistic enabled

You can connect this signal output port to the signal input port of any block.
For example, you can connect the statistical signal output port to

® A Signal Scope or X-Y Signal Scope block, to create a plot using the statistic.

* A Display block, which shows the statistic on the block icon throughout

the simulation.

® A Discrete Event Signal to Workspace block, which writes the entire data
set to the MATLAB workspace when the simulation stops or pauses. To
learn more, see “Sending Data to the MATLAB Workspace” on page 3-31.

® A custom subsystem or computational block, for further data processing.
See “Deriving Custom Statistics” on page 11-7 for some specific examples.

11-5



11 Using Statistics

11-6

For more information about when SimEvents blocks update their statistical
signals and when other blocks react to the updated values, see Chapter 3,
“Working with Signals”.

Accessing Statistics When Stopping or Pausing
Simulation

In some cases, you can configure a block to report a statistic only when
the simulation stops or pauses. To do this, find the dialog box parameter
that corresponds to the given statistic and set it to Upon stop or pause, if
available. After you apply the change, the block has a signal output port
corresponding to that statistic.

Because the statistic is not reported throughout the simulation, not all uses
of the signal are appropriate. One appropriate use is in conjunction with a
Discrete Event Signal to Workspace block with Save format set to Structure
With Time.



Deriving Custom Statistics

Deriving Custom Statistics

® “Graphical Block-Diagram Approach” on page 11-7

® “Coded Approach” on page 11-8

e “Post-Simulation Analysis” on page 11-8

e “Example: Fraction of Dropped Messages” on page 11-8

¢ “Example: Computing a Time Average of a Signal” on page 11-10

e “Example: Resetting an Average Periodically” on page 11-12

You can use the built-in statistical signals from SimEvents blocks to derive
more specialized or complex statistics that are meaningful in your model. One
approach is to compute statistics during the simulation in discrete event
subsystems. Inside the subsystems, you can implement your computations
using a graphical block-diagram approach, a nongraphical coded approach.
Alternatively, you can compute statistics after the simulation is complete.

Graphical Block-Diagram Approach

The Math Operations library in Simulink and the Statistics library in the
Signal Processing Blockset can help you compute statistics using blocks. For
examples using Simulink blocks, see

o “Example: Using Event-Based Timing for a Statistical Computation” on
page 9-20, which computes the length of time during the simulation that a
queue length is above a threshold

e “Example: Fraction of Dropped Messages” on page 11-8

e “Example: Detecting Changes in the Last-Updated Signal” on page 3-18,
which computes the ratio of an instantaneous queue length to its long-term
average

¢ The function-call subsystem within the DVS Optimizer subsystem in the
Dynamic Voltage Scaling Using Online Gradient Estimation demo
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Coded Approach

The blocks in the User-Defined Functions library in Simulink can help you
compute statistics using code. For examples using the Embedded MATLAB
Function block, see

o “Example: Computing a Time Average of a Signal” on page 11-10

¢ “Example: Resetting an Average Periodically” on page 11-12

Note If you put an Embedded MATLAB Function block in a Discrete Event
Subsystem block, use the Ports and Data Manager instead of Model Explorer
to view or change properties such as the size or source of an argument. Model
Explorer does not show the contents of Discrete Event Subsystem blocks.

Post-Simulation Analysis

You can use the Discrete Event Signal to Workspace block to log data to the
MATLAB workspace and compute statistics after the simulation is complete.
For an example of post-simulation analysis, see

e “Example: Observing Service Completions” on page 2-38, which computes
the times at which a signal value either increases or remains the same

e “Example: Running a Simulation and Varying a Parameter” on page 11-30

Example: Fraction of Dropped Messages

The example below shows how to compute a ratio of event-based signals in a
discrete event subsystem. The Output Switch block either transmits or drops
the message corresponding to each entity. The goal is to compute the fraction
of dropped messages, that is, the fraction of entities that depart via OUT2
as opposed to OUT1 of the Output Switch block.
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Transmitted Messages
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Two Entity Sink blocks produce #a signals that indicate how many messages
the communication link transmits or drops, respectively. The discrete event
subsystem divides the number of dropped messages by the sum of the two #a
signals. Because the discrete event subsystem performs the division only
when one of the #a signals increases, no division-by-zero instances occur.
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Fraction of Dropped Messages
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Time

Example: Computing a Time Average of a Signal

This example illustrates how to compute a time average of a signal using the
Embedded MATLAB Function block, and especially how to make the block
retain data between calls to the function.

The model below implements a simple queuing system in which the FIFO
Queue produces the output signals

¢ #n, the instantaneous length of the queue

¢ len, the time average of the queue length; this is the time average of #n.

Din Dot P len_computad

Crizcrete Event Signal

Dizcrete Ewvent to Watkspace

Subsystem

#n 4|—b len
% OUT p—a{IN len Discrete Event Signal
out to Wiatepace
Time-Based FIFO Queus
Entity Generator 2l u auT 2l @

Single Senver Entity Sink

Top-Level Model
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The discrete event subsystem uses #n to compute the time average. In this
case, the time average should equal len. You can use a similar subsystem in
your own models to compute the time averages of other signals.

Computation of the Time Average

In the example, the discrete event subsystem performs computations each
time a customer arrives at or departs from the queue. Within the subsystem,
an Embedded MATLAB Function block keeps a running weighted sum of the
#n values that form the input, where the weighting is based on the length
of time over which the signal assumes each value.

The block uses persistent variables for quantities whose values it must retain
from one invocation to the next, namely, the running weighted sum and the
previous values of the inputs.

Below are the subsystem contents and the function that the Embedded
MATLAB Function block represents.

Lo Mot Delete

Subsystem Configuration

Co—p
Din timeawg W
Digital Clodk

Embedded
MATLAB Function

Subsystem Contents

function y = timeavg(u,t)

%TIMEAVG Compute time average of input signal U

% Y = TIMEAVG(U,T) computes the time average of U,
% where T is the current simulation time.

% Declare variables that must retain values between iterations.
persistent running_weighted_sum last_u last_t;
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% Initialize persistent variables in the first iteration.
if isempty(last_t)

running_weighted_sum = 0;

last_u = 0;

last_t = 0;
end

% Update the persistent variables.

running_weighted_sum = running_weighted_sum + last u*(t-last_t);
last u = uj;

last_t = t;

% Compute the outputs.

ift>0

y = running_weighted _sum/t;
else

y = 0;
end

Verifying the Result

After running the simulation, you can verify that the computed time average
of #n is equal to len.

isequal([len.time, len.signals.values],...
[len_computed.time, len_computed.signals.values])

The output indicates that the comparison is true.

ans =

Example: Resetting an Average Periodically

This example illustrates how to compute a sample mean over each of a series
of contiguous time intervals of fixed length, rather than the mean over the
entire duration of the simulation. The example simulates a queuing system
for 4 weeks’ worth of simulation time, where customers have access to one
server during the first 2 days of the week and five servers on the other days of

11-12



Deriving Custom Statistics

the week. The average waiting time for customers over a daily cycle depends
on how many servers are operational that day. However, you might expect the
averages taken over weekly cycles to be stable from one week to the next.

The model below uses a time-based Repeating Sequence Stair block to
determine whether entities advance to a Single Server or N-Server block, thus
creating variations in the number of operational servers. The Start Timer
and Read Timer blocks compute each entity’s waiting time in the queuing
system. A computational discrete event subsystem processes the waiting time
by computing a running sample mean over a daily or weekly cycle, as well

as the final sample mean for each cycle. Details about this subsystem are in
“Computation of the Cycle Average” on page 11-16.
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Performance of Daily Averages

When considering daily cycles, you can see that the cycle averages do not
stabilize at a single value.
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Performance of Weekly Averages

When considering weekly cycles, you can see less variation in the cycle
averages because each cycle contains the same pattern of changing service
levels. To compute the cycle average over a weekly cycle, change the Period
parameter in the Time-Based Entity Generatorl block at the bottom of the
model to 60*60*24*7, which is the number of seconds in a week.
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Computation of the Cycle Average

In the example, the discrete event subsystem performs computations each
time a customer departs from the queuing system and at each boundary

of a daily or weekly cycle. Within the subsystem, an Embedded MATLAB
Function block counts the number of customers and the total waiting time
among all customers at that point. The block resets these quantities to zero
at each boundary of a cycle.

The block uses persistent variables for quantities whose values it must
retain from one invocation to the next. The number of customers and total
waiting time are important to retain for the computation of an average over
time rather than an instantaneous statistic. Previous values of inputs are
important to retain for comparison, so the function can determine whether it
needs to update or reset its statistics.
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The outputs of the Embedded MATLAB Function block are

® runningavg, the running sample mean of the input waiting times

® cycleavg, a signal that, at reset times, represents the sample mean over
the cycle that just ended

Below are the subsystem contents and the function that the Embedded
MATLAB Function block represents.

Lo Mot Delete

Subsystem Configuration

1

Reset

runningawg

Running Auwg
fen

Coyrcle Awg

Embedded
MATLAB Function

Subsystem Contents

function [runningavg, cycleavg] = fcn(d,et,reset)

%FCN

0% 0° 0% ° o° % O° O° % O° O° o° o°

o°

Compute average of ET, resetting at each update of RESET
[RUNNINGAVG,CYCLEAVG] = FCN(D,ET,RESET) computes the average
of ET over contiguous intervals. D is the number of samples
of ET since the start of the simulation. Increases in
RESET indicate when to reset the average.

Assume this function is invoked when either D or RESET

(but not both) increases. This is consistent with the
behavior of the Discrete Event Subsystem block that contains
this block in this example.

RUNNINGAVG is the average since the start of the interval.

At reset times, CYCLEAVG is the average over the interval
that just ended; at other times, CYCLEAVG is O.
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% Declare variables that must retain values between iterations.
persistent total customers last reset last d;

% Initialize outputs.
cycleavg = 0;
runningavg = 0;

% Initialize persistent variables in the first iteration.
if isempty(total)

total = 0;

customers = 0;

last_reset = 0;

last _d = 0;
end

% If RESET increased, compute outputs and reset the statistics.
if (reset > last_reset)
cycleavg = total / customers; % Average over last interval.
runningavg = cycleavg; % Maintain running average.
total = 0; % Reset total.
customers = 0; % Reset number of customers.
last_reset = reset;
end

% If D increased, then update the statistics.
if (d > last_d)

total = total + et;

customers = customers + 1;

last d = d;

runningavg = total / customers;
end
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Using Timers

Suppose you want to determine how long each entity takes to advance from
one block to another, or how much time each entity spends in a particular
region of your model. To compute these durations, you can attach a timer to
each entity that reaches a particular spot in the model. Then you can

o Start the timer. The block that attaches the timer also starts it.

® Read the value of the timer whenever the entity reaches a spot in the
model that you designate.

® Restart the timer, if desired, whenever the entity reaches a spot in the
model that you designate.

The following sections describe how to arrange the Start Timer and Read
Timer blocks to accomplish several common timing goals:

® “Basic Example Using Timer Blocks” on page 11-19

® “Basic Procedure for Using Timer Blocks” on page 11-21

® “Timing Multiple Entity Paths with One Timer” on page 11-21

® “Restarting a Timer from Zero” on page 11-23

® “Timing Multiple Processes Independently” on page 11-24

Note Timers measure durations, or relative time. By contrast, clocks
measure absolute time. For details about implementing clocks, see
the descriptions of the Clock and Digital Clock blocks in the Simulink
documentation.

Basic Example Using Timer Blocks

A typical block diagram for determining how long each entity spends in a
region of the model is in the figure below. The Start Timer and Read Timer
blocks jointly perform the timing computation.
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The model above measures the time each entity takes between arriving at the
queue and departing from the server. The Start Timer block attaches, or
associates, a timer to each entity that arrives at the block. Each entity has its
own timer. Each entity’s timer starts timing when the entity departs from the
Start Timer, or equivalently, when the entity arrives at the FIFO Queue block.
Upon departing from the Single Server block, each entity arrives at a Read
Timer block. The Read Timer block reads data from the arriving entity’s timer
and produces a signal at the et port whose value is the instantaneous elapsed
time for that entity. For example, if the arriving entity spent 12 seconds in the
queue-server pair, then the et signal assumes the value 12.

Basic Example of Post-Simulation Analysis of Timer Data

The model above stores data from the timer in a variable called delay in the
base MATLAB workspace. After running the simulation, you can manipulate
or plot the data, as illustrated below.

% First run the simulation shown above, to create the variable
% "delay" in the MATLAB workspace.

% Histogram of delay values

edges = (0:20); % Edges of bins in histogram

counts = histc(delay.signals.values, edges); % Number of points per bin
figure(1); bar(edges, counts); % Plot histogram.

title('Histogram of Delay Values')

% Cumulative histogram of delay values

sums = cumsum(counts); % Cumulative sum of histogram counts
figure(2); bar(edges, sums); % Plot cumulative histogram.
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title('Cumulative Histogram of Delay Values')

Basic Procedure for Using Timer Blocks
A typical procedure for setting up timer blocks is as follows:

1 Locate the spots in the model where you want to begin timing and to access
the value of the timer.

2 Insert a Start Timer block in the model at the spot where you want to
begin timing.

3 In the Start Timer block’s dialog box, enter a name for the timer in the
Timer tag field. This timer tag distinguishes the timer from other
independent timers that might already be associated with the same entity.

When an entity arrives at the Start Timer block, the block attaches a
named timer to the entity and begins timing.

4 Insert a Read Timer block in the model at the spot where you want to
access the value of the timer.

5 In the Read Timer block’s dialog box, enter the same Timer tag value that
you used in the corresponding Start Timer block.

When an entity having a timer with the specified timer tag arrives at

the block, the block reads the time from that entity’s timer. Using the
Statistics tab of the Read Timer block’s dialog box, you can configure the
block to report this instantaneous time or the average of such values among
all entities that have arrived at the block.

If you need multiple independent timers per entity (for example, to time an
entity’s progress through two possibly overlapping regions of the model),
then follow the procedure above for each of the independent timers. For more
information, see “Timing Multiple Processes Independently” on page 11-24.

Timing Multiple Entity Paths with One Timer

If your model includes routing blocks, then different entities might use
different entity paths. To have a timer cover multiple entity paths, you can
include multiple Start Timer or multiple Read Timer blocks in a model, using
the same Timer tag parameter value in all timer blocks.
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Ovutput Switch Example

In the figure below, each entity advances along one of two different entity
paths via the Output Switch block. The timer continues timing, regardless of
the selected path. Finally, each entity advances to one of the two Read Timer
blocks, which reads the value of the timer.
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In the figure below, entities wait in two different queues before advancing to
a single server. The timer blocks measure the time each entity spends in its
respective queue-server pair. Two Start Timer blocks, configured with the
same Timer tag parameter value, ensure that all entities possess a timer
regardless of the path they take before reaching the server.
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Restarting a Timer from Zero

You can restart an entity’s timer, that is, reset its value to zero, whenever the
entity reaches a spot in the model that you designate. To do this, insert a
Start Timer block in the model where you want to restart the timer. Then set
the block’s If timer has already started parameter to Restart.

The figure below shows an example of restarting a timer.
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All timer blocks share the same Timer tag parameter value. All entities that
arrive at the first Start Timer block acquire a timer, which starts timing
immediately. All entities incur an initial delay, modeled by an Infinite Server
block. When entities reach the Output Switch block, they depart via one of
the two entity output ports and receive different treatment:

¢ Entities that depart via the OUT1 port advance to the queue with no
further delay, and the timer continues timing.
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¢ Entities that depart via the OUT2 port incur an additional delay, modeled
by another Infinite Server block. After the delay, the timer restarts from
zero and the entity advances to the queue.

When entities finally advance from the server to the Read Timer block, the
elapsed time is one of these quantities:

® The initial delay plus the time in the queue plus the time in the server, for
entities that departed from the Output Switch block’s OUT1 port

® The time in the queue plus the time in the server, for entities that departed
from the Output Switch block’s OUT2 port

Timing Multiple Processes Independently

You can measure multiple independent durations using the Start Timer and
Read Timer blocks. To do this, create a unique Timer tag parameter for each
independent timer. For clarity in your model, consider adding an annotation
or changing the block names to reflect the Timer tag parameter in each
timer block.

The figure below shows how to measure these quantities independently:

® The time each entity spends in the queue-server pair, using a timer with
tag T1

® The time each entity spends in the server, using a timer with tag T2
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The annotations beneath the blocks in the figure indicate the values of the
Timer tag parameters. Notice that the T1 timer starts at the time when
entities arrive at the queue, while the T2 timer starts at the time when
entities depart from the queue (equivalently, at the time when entities arrive
at the server). The two Read Timer blocks read both timers when entities
depart from the server. The sequence of the Read Timer blocks relative to
each other is not relevant in this example because no time elapses while an
entity is in a Read Timer block.
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Running a Series of Simulations

11-26

This section describes some techniques that can help you gather statistical
data from a series of simulations of your model. The topics are as follows:

® “Creating Independent Replications” on page 11-26

® “Running Simulations from MATLAB” on page 11-28

e “Regulating the Simulation Length” on page 11-33

Creating Independent Replications

When you run a simulation multiple times to gather statistics, you can create
independent replications by using a different stream of random numbers in
each replication. To vary the stream of random numbers, vary the initial
seed on which the stream of random numbers is based. Initial seed is a
parameter in the following blocks:

¢ Time-Based Entity Generator

¢ Event-Based Random Number

¢ Uniform Random Number

® Random Number

¢ Blocks in the Routing library

Also, if your simulation is configured to randomize the sequence of certain
simultaneous events, then the Configuration Parameters dialog box has a

parameter called Seed for event randomization, which indicates the initial
seed for that stream of random numbers.

Choosing Values for Initial Seed
Here are some recommendations for choosing appropriate values for Initial

seed parameters:
¢ Choose a large odd number, such as a five-digit odd number.

¢ To obtain the same stream of random numbers the next time you run the
same simulation, set Initial seed to an unchanging value.
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® To obtain a different stream of random numbers the next time you run
the same simulation, either change the value of Initial seed or set it to a
varying expression such as ceil (cputime*99999)*2+1. See the cputime
function for more details.

o IfInitial seed parameters appear in multiple places in your model, then
choose different values or different expressions for each Initial seed
parameter.

Setting Values for Initial Seed

When running a simulation interactively, you can simply enter your chosen
value for the initial seed in the dialog box for a given block.

When you run a simulation multiple times to gather statistics, you might
want to use a MATLAB variable to make it easier to assign a different seed
each time you run the simulation. Follow this procedure for each Initial
seed parameter that you need to set:

1 Assign a value to the MATLAB variable. For example, the code below
defines a variable called initseed.

initseed = 68521;

2 In the Initial seed field of the dialog box, enter the name of the MATLAB
variable. An example is below.

E! Source Block Parameters: Event-Based x|

—Ewent-B azed Random Number [mazk] [link]

Generate random numbers from the specified distribution,
parameters, and initial seed.

—Parameters

Distribution: | Exponential j

Meat:
|1

Initial seed:

Iinitseed

Cancel Help
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3 Run the simulation using Simulation > Start or the sim function. During
the simulation, the value that the block uses for the initial seed is the one
that you assigned to the MATLAB variable.

4 Repeat steps 1 and 3 if appropriate, using a different value each time.

If you are using the above procedure within an M-file that runs a series

of simulations in a loop, put the variable assignment and the simulation
command (sim) in the M-file. For an example of this approach, see “Example:
Running a Simulation Repeatedly to Gather Results” on page 11-28.

Running Simulations from MATLAB

When you analyze simulation statistics, you typically need to run the
simulation many times. One simulation run, no matter how long, is still a
single sample and probably inadequate for valid statistical analysis. The sim
function enables you to run simulations unattended, while the Discrete Event
Signal to Workspace block writes signal contents to the MATLAB workspace
for subsequent storage or analysis. To learn about this function and block, see
“Running a Simulation Programmatically” in the Simulink documentation
and the reference page for the Discrete Event Signal to Workspace block. This
section provides examples and tips that focus on SimEvents simulations, in
these topics:

¢ “Example: Running a Simulation Repeatedly to Gather Results” on page
11-28

¢ “Example: Running a Simulation and Varying a Parameter” on page 11-30

Example: Running a Simulation Repeatedly to Gather Results

Suppose you want to run the M/D/1 Queuing System demo model many times
to check whether the ensemble average for the waiting time is close to the
value predicted by queuing theory. You can do this by modifying the model
to make it suitable for statistical analysis, simulating the modified model
multiple times, and then analyzing the results.

1 Open the model by entering sedemo_md1 in the MATLAB Command
Window.



Running a Series of Simulations

2 Save the model as md1_stats.mdl in either the current directory or a
writable directory on the MATLAB path.

3 From the SimEvents Sinks library, drag the Discrete Event Signal to
Workspace block into the model.

4 In the Discrete Event Signal to Workspace block’s dialog box,

¢ Set Limit data points to last to 1 because only the final value of the
statistic is relevant for this example.

¢ Set Save format to Array.

5 Create a branch line from the output of the subsystem labeled Waiting
Time Evaluation and connect the branch line to the Discrete Event Signal
to Workspace block.

6 In the Exponential Interarrival Time Distribution block’s dialog box,
set Initial seed to seedvalue. The use of a variable facilitates using a
different set of random numbers in each run. However, do not run the
simulation yet because seedvalue is not defined.

7 Resave the model, which is now suitable for statistical analysis of the
waiting time.

8 To run the simulation repeatedly and capture the statistic from each run,
execute the following code in MATLAB.

% Set up.

load_system('mdi1_stats'); % Load system if not already loaded.
nruns = 100; % Number of simulation runs

w = zeros(nruns,1); % Preallocate space for results

opts = simset('SrcWorkspace', 'Current', 'DstWorkspace', 'Current');
h = waitbar(0, 'Running simulations. Please wait...');

seedarray = ceil(rand(nruns,1)*999999)*2+1;

% Main simulation loop

for k = 1:nruns
waitbar(k/nruns,h); % Update progress indicator.
seedvalue = seedarray(k);
sim('md1_stats',[],opts); % Run simulation.
w(k) = simout(2); % Store empirical value of w.
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end

w_theor = simout(1); % Store theoretical value.
close(h); % Close progress indicator window.

9 To display some information about the collected statistics, enter the
following code in the MATLAB Command Window.

format long; % Show more digits in Command Window output.
disp('Theoretical value and ensemble average are:');
disp([w_theor, mean(w)]);

disp('Standard devision for empirical values is:');
disp(std(w));

disp('Relative error in ensemble average is:');
disp([num2str(100*abs(w_theor - mean(w))/w_theor),

'%'1);

Sample output is below. Your results might vary because the initial seed for
the random number generator is itself random.

Theoretical value and ensemble average are:
0.33333333333333  0.33163393290150

Standard devision for empirical values is:
0.01961357797243

Relative error in ensemble average is:
0.50982%

Example: Running a Simulation and Varying a Parameter

Suppose you want to run the M/D/1 Queuing System demo model with
different values of the mean arrival rate. You can do this by modifying the
model to make it suitable for statistical analysis with a varying parameter,
simulating the modified model multiple times with different values of the
parameter, and then analyzing the results. Part of the procedure below

is similar to the one in “Example: Running a Simulation Repeatedly to
Gather Results” on page 11-28; however, the filename, MATLAB code, and
instructions regarding the Constant and Arrival Rate Gain blocks are
different.
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1 Open the model by entering sedemo_md1 in the MATLAB Command
Window.

2 Save the model as md1_varymean.mdl in either the current directory or a
writable directory on the MATLAB path.

3 From the SimEvents Sinks library, drag the Discrete Event Signal to
Workspace block into the model.

4 In the Discrete Event Signal to Workspace block’s dialog box,

¢ Set Limit data points to last to 1 because only the final value of the
statistic is relevant for this example.

e Set Save format to Array.

5 Create a branch line from the output of the subsystem labeled Waiting
Time Evaluation and connect the branch line to the Discrete Event Signal
to Workspace block.

6 In the Exponential Interarrival Time Distribution block’s dialog box, set
Initial seed to ceil (cputime*99999)*2+1. This causes the simulation to
use a different set of random numbers in each run, although the results are
not repeatable.

7 Remove the Arrival Rate Gain block and close the connection gap between
the Constant block (labeled Maximal Arrival Rate, but now signifying the
mean arrival rate) and the subsystem labeled Exponential Interarrival
Time Distribution.

8 Open the dialog box of the Constant block labeled Maximal Arrival Rate and
set Constant value to m, which is a MATLAB variable to be defined later.

9 Remove the model’s callbacks that are not relevant for this modified
version, by executing the following in MATLAB.

set_param('md1_varymean', 'PostLoadFcn',"'")
set_param('md1_varymean', 'CloseFcn','")

10 Resave the model, which is now suitable for statistical analysis of the
waiting time with varying mean arrival rates.
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11 To run the simulation repeatedly while varying the mean arrival rate, and
capture the statistic from each run, execute the following code in MATLAB.
Note that it takes some time to run.

% Set up.

load_system('md1_varymean'); % Load system if not yet loaded.
nruns = 100; % Number of simulation runs

mvec = (0.2 : 0.1 : 0.4); % Values of mean arrival rate

nm = length(mvec); % Number of values in mvec

opts = simset('SrcWorkspace', 'Current', 'DstWorkspace', 'Current');

% Preallocate space for results.
w = zeros(nruns,1);

wavg = zeros(nm,1);

w_theor = zeros(nm,1);

% Vary the mean arrival rate.
for midx = 1:nm
% m is a parameter in the Constant block, so changing m
% changes the mean arrival rate in the simulation.
m = mvec(midx);
disp(['Simulating with mean arrival rate=' num2str(m)]);

% Replicate for each value of m
for k = 1:nruns
sim('md1_varymean',[],opts); % Run simulation.
w(k) = simout(2); % Store empirical value of w.
end

wavg(midx) = mean(w); %
(

Average for fixed value of m
w_theor(midx) = simout(1)

1); % Theoretical value

end

12 To plot the average waiting time (averaged over multiple simulations for
each fixed value of mean arrival rate) against mean arrival rate, execute
the following code in MATLAB.

figure; % Create new figure window.
plot(mvec,w_theor,'b.-"'); % Plot theoretical curve.
hold on;

plot(mvec,wavg, 'r*'); % Plot empirical values.
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legend('Theoretical', 'Empirical', 'Location', 'NorthWest')
xlabel('Mean Arrival Rate')

ylabel('Average Waiting Time (s)')

hold off

A sample plot is below.
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Regulating the Simulation Length

When you run a simulation interactively to observe behavior qualitatively,
the stop time of the simulation might not matter. However, when you need
to gather statistics from a simulation, knowing when to end the simulation
is more important. Typical criteria for ending a discrete-event simulation
include the following:

¢ A fixed amount of time passes

¢ The cumulative number of entity departures from a particular block crosses
a fixed threshold. This might be analogous to processing a fixed number of
packets, parts, or customers, for example.
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® The simulation achieves a particular state, such as an overflow or a
machine failure

Setting a Fixed Stop Time
To run a simulation interactively with a fixed stop time, do the following:

1 Open the Configuration Parameters dialog box by choosing
Simulation > Configuration Parameters in the menu of the model
window.

2 In the dialog box, set Stop time to the desired stop time.

3 Run the simulation by choosing Simulation > Start.

To fix the stop time when running a simulation from MATLAB, use syntax like

sim('model',timespan)

where model is the name of the model and timespan is the desired stop time.

Stopping Based on Entity Count

The basic procedure for stopping a simulation based on the total number of
entity departures is as follows:

1 Find the block’s parameter that enables the departure counter as a signal
output, usually called Number of entities departed. Exceptions are
the Write count to signal port #d parameter of the Entity Departure
Counter block and the Number of entities arrived parameter of the
Entity Sink block.

2 Set the parameter to On. This causes the block to have a signal output port
corresponding to the entity count.

3 Connect the new signal output port to a Discrete Event Subsystem block,
from the SimEvents Ports and Subsystems library.

4 Double-click the Discrete Event Subsystem block to open the subsystem it
represents.

5 Delete the Discrete Event Outport block labeled Dout.
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6 Connect the Discrete Event Inport block labeled Din to a Compare To
Constant block, from the Logic and Bit Operations library in Simulink.
7 In the Compare To Constant block,
* Set Operator to >=.
* Set Constant value to the desired number of entity departures.

* Set Output data type mode to boolean.

8 Connect the Compare To Constant block to a Stop Simulation block, from
the Sinks library in Simulink. The result should look like the following,
except that your SimEvents block might be a block other than Entity
Departure Counter.

#dl— l0in

—sin 1]
ouT Driscrete Event Subsystem

Entity Departure
Counter

Top-Level Model

Lo Not Delete

Subsystem Configuration

Crim

Compare Stop Simulation
To Constant

Subsystem Contents

See the considerations discussed in “Tips for Using State-Based Stopping
Conditions” on page 11-39 below. They are relevant if you are stopping
the simulation based on an entity count, where “desired state” means the
entity-count threshold.
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Stopping Upon Reaching a Particular State

Suppose you want the simulation to end when it achieves a particular state,
such as an overflow or a machine failure. The state might be the only criterion
for ending the simulation, or the state might be one of multiple criteria, each
of which is sufficient reason to end the simulation. An example that uses
multiple criteria is a military simulation that ends when all identified targets
are destroyed or all resources (ammunition, aircraft, etc.) are depleted,
whichever occurs first.

Once you have identified a state that is relevant for ending the simulation,
you typically create a Boolean signal that queries the state and connect the
signal to a Stop Simulation block. Typical ways to create a Boolean signal
that queries a state include the following:

¢ Connect a signal to a logic block to determine whether the signal satisfies
some condition. See the blocks in the Logic and Bit Operations library in
Simulink. The figure below illustrates one possibility.

1 iy [——{ Dlin

ouT 9—| Discrete Event Subsystem

Single Sernver

—=|IN

Top-Level Model

Lo Not Delete

Subsystem Configuration

=095
Din

Campare Stop Simulation
Tao Constant

Subsystem Contents

¢ Use a Get Attribute block to query an attribute and a logic block to
determine whether the attribute value satisfies some condition. The next
figure illustrates one possibility.
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® To end the simulation whenever an entity reaches a particular entity
path, you can end that path with an Entity Sink block, enable that block’s
output signal to count entities, and check whether the output signal is
greater than zero.
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® Logically combine multiple tests using logic blocks to build the final
Boolean signal that connects to a Stop Simulation block. (A logical OR
operation is implied if your model contains an independent Stop Simulation
block for each of the multiple tests, meaning that the simulation ends when
the first such block processes an input signal whose value is true.) The
figure below illustrates one possibility using the exclusive-OR of two tests,
one of which is in turn the logical AND of two tests.
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Tips for Using State-Based Stopping Conditions. When using a state
rather than a time to determine when the simulation ends, keep in mind
the following considerations:

e Ifthe model has a finite stop time, then the simulation might end before
reaching the desired state. Depending on your needs, this might be a
desirable or undesirable outcome. If it is important that the simulation not
stop too early, then you can follow the instructions in “Setting a Fixed Stop
Time” on page 11-34 and use Inf as the Stop time parameter.

® If you set the Stop time parameter to Inf, then you should ensure that
the simulation actually stops. For example, if you want to stop based on an
entity count but the simulation either reaches a deadlock or sends most
entities on a path not involving the block whose departure count is the
stopping criterion, then the simulation might not end.

® Checking for the desired state throughout the simulation might make the
simulation run more slowly than if you used a fixed stop time.
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Role of Stateflow in SimEvents Models

SimEvents works with Stateflow to represent systems containing
state-transition diagrams that can produce or be controlled by discrete events.
SimEvents and Stateflow are both related to event-driven modeling, but they
play different roles:

¢ SimEvents blocks can model the movement of entities through a system
so you can learn how such movement relates to overall system activity.
Entities can carry data with them. Also, SimEvents blocks can generate
events at times that are truly independent of the time steps dictated by
the ODE solver in Simulink.

e Stateflow charts can model the state of a block or system. Charts
enumerate the possible values of the state and describe the conditions that
cause a state transition. Runtime animation in a Stateflow chart depicts
transitions but does not indicate movement of data.

For scenarios that combine SimEvents blocks with Stateflow charts, see
“Examples Using Stateflow and SimEvents Blocks” on page 12-5.

You can interpret the Signal Latch block with the st output signal enabled
as a two-state machine that changes state when read and write events
occur. Similarly, you can interpret Input Switch and Output Switch blocks
as finite-state machines whose state is the selected entity port. However,
Stateflow offers more flexibility in the kinds of state machines you can model
and an intuitive development environment that includes animation of state
transitions during the simulation.
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Guidelines for Using Stateflow and SimEvents Blocks

When your model contains Stateflow charts in addition to SimEvents blocks,
you must follow these rules:

¢ If the chart is capable of propagating its execution context, select this
option as follows:

a Select the Stateflow block and choose Edit > Subsystem Parameters
from the model window’s menu bar.

b In the dialog box that opens, select Propagate execution context
across subsystem boundary if it appears and click OK. If this
parameter does not appear in the dialog box, just click OK.

Note If the chart does not offer this option, you might see a delay in the
response of other blocks to the chart’s output signals. The duration of the
delay is the time between successive calls to the chart.

¢ If an output of the chart connects to a SimEvents block, do not configure
the chart to be entered at initialization. To ensure that this configuration is
correct,

a Select the File > Chart Properties from the chart window’s menu bar.

b In the dialog box that opens, clear Execute (enter) Chart At
Initialization and click OK. This check box is cleared by default.

When you design default transitions in your chart, keep in mind that the
chart will not be entered at initialization. For example, notice that the
default transition in the example in “Example: Failure and Repair of a
Server” on page 4-17 indicates the state corresponding to the first actual
event during the simulation, not an initial state.

¢ [f the chart has an output signal, you can provide a nonzero initial
condition using the Signal Latch block as in “Specifying Initial Conditions
for Event-Based Signals” on page 3-27. If you do this, you should select
Resolve simultaneous signal updates according to event priority on
the Write tab of the Signal Latch block. Because the chart is not entered at
initialization, you cannot use the chart itself to provide a nonzero initial
condition for the output signal.
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¢ Ifthe chart has both a function-call output and a signal output, be aware of
possible latency in the signal. You might need to specify an event priority
in a SimEvents block that reacts to the function call, as a way to ensure
that the reaction to the function call occurs after the update of the chart’s
output signal has been fully processed in the model.
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Examples Using Stateflow and SimEvents Blocks

This section describes some Stateflow usage in SimEvents demo and example
models. The topics are

e “Failure State of Server” on page 12-5

® “Go-Back-N ARQ Model” on page 12-5

Failure State of Server

The examples in “Using Stateflow to Implement a Failure State” on page 4-16
use Stateflow to implement the logic that determines whether a server is
down, under repair, or operational. SimEvents blocks model the asynchronous
arrival of customers, advancement of customers through a queue and

server, and asynchronous failures of the server. While these examples could
alternatively have represented the server’s states using signal values instead
of states of a Stateflow chart, the Stateflow approach is more intuitive and
scales more easily to include additional complexity.

Go-Back-N ARQ Model

The Go-Back-N Automatic Repeat Request (ARQ) demo uses SimEvents
and Stateflow blocks to model a communication system. SimEvents blocks
implement the movement of data frames and acknowledgment messages
from one part of the system to another. Stateflow blocks implement the
logical transitions among finitely many state values of the transmitter and
the receiver.

Receiver State

At the receiver, the chart decides whether to accept or discard an incoming
frame of data, records the identifier of the last accepted frame, and regulates
the creation of acknowledgment messages. Interactions between the Stateflow
chart and SimEvents blocks include these:

¢ The arrival of an entity representing a data frame causes the generation of
a function call that invokes the chart.

¢ The chart can produce a routing signal that determines which path entities
take at an Output Switch block.
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® The chart can produce a function call that causes the Event-Based Entity
Generator block to generate an entity representing an acknowledgment
message.

Transmitter State

At the transmitter, the chart controls the transmission and retransmission
of frames. Interactions between the Stateflow chart and SimEvents blocks
include these:

¢ The arrival of an entity representing a new data frame or an
acknowledgment message causes the generation of a function call that
invokes the chart.

¢ The completion of transmission of a frame (that is, the completion of service
on an entity representing a frame) causes the generation of a function
call that invokes the chart.

¢ The chart can produce a routing signal that determines which path entities
take at an Output Switch block.

¢ The chart can produce a function call that causes the Release Gate block to
permit the advancement of an entity representing a data frame to transmit
(function call at Stateflow block’s tx output port) or retransmit (function
call at Stateflow block’s retx output port).



Troubleshooting
Discrete-Event Simulations

Viewing the Event Calendar (p. 13-2) Logging information about events

Viewing Entity Locations (p. 13-9) Logging information about entities
advancing from block to block

Common Problems in SimEvents Some modeling errors and ways to
Models (p. 13-13) avoid them

Configuration Parameters for SimEvents parameters in the
SimEvents Models (p. 13-28) Configuration Parameters dialog box

Additional troubleshooting techniques are in “Using Plots for Troubleshooting”
on page 10-9.
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Viewing the Event Calendar

Knowing which events are on the event calendar at relevant times during the
simulation can help you learn and troubleshoot. SimEvents models offer an
option to have the MATLAB Command Window tell you

® When each event is placed on the event calendar

¢ When each event is processed

¢ The list of events on the event calendar

This section describes how to enable this option and interpret the information.
The topics are as follows:

¢ “Turning Event Logging On” on page 13-2

® “Logging the Processing of Events” on page 13-3

¢ “Logging the Scheduling of Events” on page 13-4

* “Logging the List of Events” on page 13-5

e “Example: Event Logging” on page 13-6

To create a file containing messages that appear in the MATLAB Command
Window, use the diary function.

Turning Event Logging On

To enable event logging for a particular model that contains one or more
blocks from the SimEvents libraries, use this procedure:

1 Select Simulation > Configuration Parameters from the model
window’s menu to open the Configuration Parameters dialog box.

2 Click SimEvents on the left side of the Configuration Parameters dialog
box.

3 Select one or more of the following options on the right side of the dialog box:
* Display events in event calendar

¢ Log events when executed
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* Log events when scheduled

Selecting Display events in event calendar disables the other two
options because displaying the events in the event calendar automatically
includes logging events when scheduled and executed. For details, see
“Logging the List of Events” on page 13-5.

The next time you run the simulation, the MATLAB Command Window
displays information about the event calendar.

Logging the Processing of Events

When you select Log events when executed as described in “Turning Event
Logging On” on page 13-2 and run the simulation, the MATLAB Command
Window displays a message like the following each time an event is processed:

SimEvents: Executing @ 1.000000000000000 (T=1.000000000000000
P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')

This indicates that the Time-Based Entity Generator block in a model called
mymodel generates an entity at time 1 and that this event has event priority
300.

The table below lists the pieces of information contained in messages like this.

Portion of Message Description

Executing Distinguishes this message from a
scheduling message described in “Logging
the Scheduling of Events” on page 13-4

T= followed by a number Simulation time at which the event is
processed

P= followed by a number Event priority of the event

B= followed by a block Block that processes the event

pathname

N= followed by a string Name of the event, such as

EntityGeneration or ServiceCompletion
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For a Discrete Event Inport block whose name is blockname, the B= portion of
the message uses f_blockname instead of blockname.

Logging the Scheduling of Events

When you select Log events when scheduled as described in “Turning
Event Logging On” on page 13-2 and run the simulation, the MATLAB
Command Window displays a message like the following each time a new
event appears on the event calendar:

SimEvents: Scheduling @ 0.000000000000000 (T=1.000000000000000
P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')

This indicates that at time 0, the Time-Based Entity Generator block in a
model called mymodel schedules an entity generation to occur at time 1 and
that this event has event priority 300.

The table below lists the pieces of information contained in messages like this.

Portion of Message Description

Scheduling or Deleting Distinguishes this message from an
execution message described in “Logging the
Processing of Events” on page 13-3

@ followed by a number Simulation time at which the scheduling
occurs

T= followed by a number Simulation time at which the event occurs

P= followed by a number Event priority of the event

B= followed by a block Block that schedules the event

pathname

N= followed by a string Name of the event, such as

EntityGeneration or ServiceCompletion

The word Deleting instead of Scheduling describes the deletion of timeout
events from the event calendar when an entity arrives at the Cancel Timeout
block.
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The processing sequence and the scheduling sequence might differ for
simultaneous events having equal priority.

For a Discrete Event Inport block whose name is blockname, the B= portion of
the message uses f_blockname instead of blockname.

Logging the List of Events

When you select Display events in event calendar as described in “T'urning
Event Logging On” on page 13-2 and run the simulation, the MATLAB
Command Window displays a message like the following each time a new
event appears on the event calendar or is processed:

SimEvents: Scheduling @ 2.000000000000000 (T=3.000000000000000

P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')
%BEGIN list event in calendar @ 2.000000000000000

SimEvents: Event in calendar @ 2.000000000000000 (T=2.300000000000000
P=500 B='mymodel/Single Server' N='ServiceCompletion')

SimEvents: Event in calendar @ 2.000000000000000 (T=3.000000000000000
P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')
%END list event in calendar @ 2.000000000000000

The message has these key components:

® A line that begins with SimEvents: Scheduling or SimEvents:
Deleting is a scheduling message as described in “Logging the Scheduling
of Events” on page 13-4. The excerpt above indicates that at time 2, the
Time-Based Entity Generator block in a model called mymodel schedules an
entity generation to occur at time 3 and that this event has event priority
300.

Alternatively, a line that begins with SimEvents: Executing is an event
processing message as described in “Logging the Processing of Events”
on page 13-3.

® Lines between %BEGIN and %END form a list of all events on the event
calendar at a given time, after the scheduling or execution mentioned in
the other part of the message has occurred.

The table below describes the pieces of information contained in the list of
all events.
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Portion of Message Description

@ followed by a number Simulation time at which the event calendar
is being displayed

T= followed by a number Simulation time at which the event occurs

P= followed by a number Event priority of the event

B= followed by a block Block that processes the event or, in the

pathname case of a scheduled timeout event, the last

storage block that held the entity

N= followed by a string Name of the event, such as
EntityGeneration or ServiceCompletion

For a Discrete Event Inport block whose name is blockname, the B= portion of
the message uses f_blockname instead of blockname.

Example: Event Logging

You can view the event calendar from the first few seconds of simulation of
the M/M/1 Queuing System demo using this procedure:

1 Open the demo by entering sedemo_mm1 in the MATLAB Command Window
or by using the MATLAB Help browser.

2 Select Simulation > Configuration Parameters from the model
window’s menu to open the Configuration Parameters dialog box.

3 Click SimEvents on the left side of the Configuration Parameters dialog
box.

4 Select Display events in event calendar on the right side of the dialog
box and click OK.

5 Run the simulation for 3 seconds by entering the following in the MATLAB
Command Window:

sim('sedemo_mmi',3);
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Interpreting the Event Logging Messages

The resulting messages in the MATLAB Command Window show you the
state of the event calendar during the simulation:

¢ The first entity generation event is scheduled at time 0, to occur at time
0. This is because the entity generator has the Generate entity at

simulation start option selected. The event calendar contains the entity
generation event.

SimEvents: Scheduling @ 0.000000000000000 (T=0.000000000000000

P=1 B='sedemo_mm1/Time-Based Entity Generator' N='EntityGeneration')
%BEGIN list event in calendar @ 0.000000000000000

SimEvents: Event in calendar @ 0.000000000000000 (T=0.000000000000000
P=1 B='sedemo_mm1/Time-Based Entity Generator')

%END list event in calendar @ 0.000000000000000

¢ The entity generation event is processed, leaving the event calendar empty.

SimEvents: Executing @ 0.000000000000000 (T=0.000000000000000

P=1 B='sedemo_mm1/Time-Based Entity Generator' N='EntityGeneration')
%BEGIN list event in calendar @ 0.000000000000000

%END list event in calendar @ 0.000000000000000

¢ The entity advances immediately to the server, which schedules a service
completion event. The event calendar contains the service completion event.

SimEvents: Scheduling @ 0.000000000000000 (T=2.991406386946900

P=1 B='sedemo_mm1/Single Server' N='ServiceCompletion')

%BEGIN list event in calendar @ 0.000000000000000

SimEvents: Event in calendar @ 0.000000000000000 (T=2.991406386946900
P=1 B='sedemo_mm1/Single Server')

%END list event in calendar @ 0.000000000000000

® The second entity generation event is scheduled for a future time. The
event calendar contains two events: the service completion event and the
entity generation event.

SimEvents: Scheduling @ 0.000000000000000 (T=3.184988194595833

P=1 B='sedemo_mm1/Time-Based Entity Generator' N='EntityGeneration')
%BEGIN list event in calendar @ 0.000000000000000

SimEvents: Event in calendar @ 0.000000000000000 (T=2.991406386946900
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P=1 B='sedemo_mm1/Single Server')

SimEvents: Event in calendar @ 0.000000000000000 (T=3.184988194595833
P=1 B='sedemo_mm1/Time-Based Entity Generator')

%END list event in calendar @ 0.000000000000000

¢ The service completion event is processed, leaving only the entity
generation event on the event calendar.

SimEvents: Executing @ 2.991406386946900 (T=2.991406386946900

P=1 B='sedemo_mm1/Single Server' N='ServiceCompletion')

%BEGIN list event in calendar @ 2.991406386946900

SimEvents: Event in calendar @ 2.991406386946900 (T=3.184988194595833
P=1 B='sedemo_mm1/Time-Based Entity Generator')

%END list event in calendar @ 2.991406386946900
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Viewing Entity Locations

Knowing when an entity departs from one block and arrives at another block
during the simulation can help you learn and troubleshoot. SimEvents models
offer an option to have the MATLAB Command Window display information
about entity locations. This section describes how to enable this option and
interpret the information. The topics are as follows:

® “Turning Entity Logging On” on page 13-9
¢ “Interpreting Entity Logging Messages” on page 13-9
o “Example: Entity Logging” on page 13-10

To create a file containing messages that appear in the MATLAB Command
Window, use the diary function.

Turning Entity Logging On
To enable entity logging for a particular model that contains one or more
blocks from the SimEvents libraries, use this procedure:

1 Select Simulation > Configuration Parameters from the model
window’s menu to open the Configuration Parameters dialog box.

2 Click SimEvents on the left side of the Configuration Parameters dialog
box.

3 Select Log entities advancing from block to block on the right side
of the dialog box:

The next time you run the simulation, the MATLAB Command Window
displays information about entities advancing from block to block.

Interpreting Entity Logging Messages

When you select Log entities advancing from block to block as described
in “Turning Entity Logging On” on page 13-9 and run the simulation, the
MATLAB Command Window displays a message like the following each time
an entity departs from one block and advances to another block:
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SimEvents:

Entity advancing @ 0.000000000000000

(From="mymodel/Time-Based Entity Generator' To='mymodel/FIFO Queue')

This indicates that at time 0, an entity departs from the Time-Based Entity
Generator block and arrives at the FIFO Queue block, in a model called

mymodel.

The table below lists the pieces of information contained in messages like this.

Portion of Message

Description

@ followed by a number

Simulation time at which the entity
advances

From= followed by a block
pathname

Block from which the entity departs

To= followed by a block
pathname

Block at which the entity arrives

Example: Entity Logging
By viewing entity locations, you can get information about the model
described in “Example: Using an Attribute to Select an Output Port” in the

getting started documentation.
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® At the beginning of the simulation, the first entity advances from the entity
generator to the server.

SimEvents: Entity Advancing @ 0.000000000000000

(From="'doc_outsw_attr/Time-Based Entity Generator' To='doc_outsw_attr/Set Attribute')
SimEvents: Entity Advancing @ 0.000000000000000

(From="doc_outsw_attr/Set Attribute' To='doc_outsw_attr/FIFO Queue')

SimEvents: Entity Advancing @ 0.000000000000000

(From="doc_outsw_attr/FIFO Queue' To='doc_outsw_attr/Single Server')

® After completing its service, the first entity departs from the server and
is routed to Entity Sink1.

SimEvents: Entity Advancing @ 1.000000000000000
(From='doc_outsw_attr/Single Server' To='doc_outsw_attr/Output Switch')
SimEvents: Entity Advancing @ 1.000000000000000
(From="'doc_outsw_attr/Output Switch' To='doc_outsw_attr/Entity Sink1')

¢ The second entity advances from the entity generator to the server.

SimEvents: Entity Advancing @ 4.898639080694728

(From="'doc_outsw_attr/Time-Based Entity Generator' To='doc_outsw_attr/Set Attribute')
SimEvents: Entity Advancing @ 4.898639080694728

(From="'doc_outsw_attr/Set Attribute' To='doc_outsw_attr/FIFO Queue')

SimEvents: Entity Advancing @ 4.898639080694728

(From="'doc_outsw_attr/FIFO Queue' To='doc_outsw_attr/Single Server')

® The third entity advances from the entity generator to the queue. (The
third entity cannot advance to the server because the server is busy serving
the second entity.)

SimEvents: Entity Advancing @ 5.234759100998515

(From='doc_outsw_attr/Time-Based Entity Generator' To='doc_outsw_attr/Set Attribute')
SimEvents: Entity Advancing @ 5.234759100998515

(From="'doc_outsw_attr/Set Attribute' To='doc_outsw_attr/FIFO Queue')

® At the end of its service time, the second entity departs from the server and
is routed to Entity Sink2. As a result, the third entity advances from the
queue to the server.

SimEvents: Entity Advancing @ 5.898639080694728

(From="doc_outsw_attr/Single Server' To='doc_outsw_attr/Output Switch')
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SimEvents: Entity Advancing @ 5.898639080694728
(From="'doc_outsw_attr/Output Switch' To='doc_outsw_attr/Entity Sink2")
SimEvents: Entity Advancing @ 5.898639080694728

(From="'doc_outsw_attr/FIFO Queue' To='doc_outsw_attr/Single Server')

The entity logging messages do not count or otherwise identify which entity is
advancing. The descriptions above indicate when the first, second, or third
entity is the one that advances because such inferences are straightforward
in this example.
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Common Problems in SimEvents Models

Troubleshooting a discrete-event simulation can be challenging because
blocks that form an entity path operate in coupled ways. The block whose
behavior surprises you might not be the source of a mistake. For example,
after troubleshooting a surprising set of values in the #d output signal from a
server, you might find that the problem is not in the server itself but rather in
the configuration of a gate or switch block in another part of the model.

Some common problems relate to the simultaneity of events and the sequence
in which the events are processed. When events occur simultaneously, it

is because they have a causal relationship to each other or because their
occurrence times happen to be equal or close enough.

This section describes some common problems. Specific symptoms and fixes
are difficult to generalize, but this section offers examples or tips where

feasible.

The problems are presented in these topics:

“Unexpectedly Simultaneous Events” on page 13-13

¢ “Unexpectedly Nonsimultaneous Events” on page 13-14

¢ “Unexpected Processing Sequence for Simultaneous Events” on page 13-14
¢ “Time-Based Block Not Recognizing Certain Trigger Edges” on page 13-15
¢ “Incorrect Timing of Signals” on page 13-15

¢ “Unexpected Use of Old Value of Signal” on page 13-17

e “Effect of Initial Condition on Signal Loops” on page 13-21

® “Loops in Entity Paths Without Storage Blocks” on page 13-23

¢ “Unexpected Timing of Random Signal” on page 13-24

¢ “Unexpected Correlation of Random Processes” on page 13-26

Unexpectedly Simultaneous Events

An unexpected simultaneity of events can result from roundoff error in event
times or other floating-point quantities, and might cause the processing
sequence to differ from your expectation about when each event should occur.
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Computers’ use of floating-point arithmetic involves a finite set of numbers
with finite precision. Events scheduled on the event calendar for times T and
T+dt are considered simultaneous if 0 < dt < 128*eps*T where eps is the
floating-point relative accuracy in MATLAB and T is the simulation time.

If you have a guess about which events’ processing is suspect, then adjusting
event priorities or using the Instantaneous Event Counting Scope block

can help diagnose the problem. For examples involving event priorities, see
“Example: Race Conditions at a Switch” on page 2-25 and the Event Priorities
demo. For an example using the Instantaneous Event Counting Scope block,
see “Example: Counting Events from Multiple Sources” on page 2-48.

Unexpectedly Nonsimultaneous Events

An unexpected lack of simultaneity can result from roundoff error in event
times or other floating-point quantities. Computers’ use of floating-point
arithmetic involves a finite set of numbers with finite precision. Events
scheduled on the event calendar for times T and T+dt are considered
simultaneous if 0 < dt < 128*eps*T where eps is the floating-point relative
accuracy in MATLAB and T is the simulation time.

If roundoff error is very small, then the event logging feature and scope blocks
might not reveal enough precision to confirm whether events are simultaneous
or only close. An alternative technique is to use the Discrete Event Signal to
Workspace block to collect data in MATLAB as in the example below.

If your model requires that certain events be simultaneous, then use modeling
techniques aimed at effecting simultaneity. For an example, see “Example:
Race Conditions at a Switch” on page 2-25.

Unexpected Processing Sequence for Simultaneous
Events

An unexpected sequence for simultaneous events could result from the
arbitrary or random handling of events having equal priorities, mentioned in
“Processing Sequence for Simultaneous Events” on page 2-11. The sequence
might even change when you run the simulation again. When the sequence
is arbitrary, you should not make any assumptions about the sequence or
its repeatability.
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If you copy and paste blocks that have an event priority parameter, the
parameter values do not change unless you manually change them.

An unexpected processing sequence for simultaneous block operations,
including signal updates, could result from interleaving of block operations.
For information and examples, see “Interleaving of Block Operations” on
page 14-8.

Time-Based Block Not Recognizing Certain Trigger
Edges

Time-based blocks have a slightly different definition of a trigger edge
compared to event-based blocks. If you use event-based signals with Triggered
Subsystem blocks or Stateflow blocks with trigger inputs, then the blocks
might not run when you expect them to. For more information, suggestions,

and an example, see “Zero-Duration Values and Time-Based Blocks” on page
14-17.

Incorrect Timing of Signals

If you use a time-based block to process event-based signals, then the output
signal might be a time-based signal. Depending on your model, you might
notice that

¢ The output signal assumes a new value at a later time than the event that
caused the last update of the event-based signal.

¢ The output signal assumes incorrect values.

* An event-based block that uses the output signal, such as an Event-Based
Entity Generator block, operates with incorrect timing.

You can avoid these problems by putting the time-based block in a discrete
event subsystem, as described in Chapter 9, “Controlling Timing with
Subsystems”. If your time-based block is in a Function-Call Subsystem,
then be sure to select Propagate execution context across subsystem
boundary as described in “Setting Up Function-Call Subsystems in
SimEvents Models” on page 9-34.
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Example: Time-Based Addition of Event-Based Signals

The model below adds the lengths of two queues. The queue lengths are
event-based signals, while the Add block is a time-based block. It is important
that the Add block use up-to-date values of its input signals each time the
queue length changes and that the output signal’s updates correspond to
updates in one of the queue length signals.

Modeling error
in use of time-based hlock

+ "
@, 0uT e
Add
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Time-Based #n
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Distribugion = Unifarm
initmum = 2

If you build this model without having used simeventsstartup previously,

or without using simeventsconfig later, then you might see the plot below.
The incorrect timing is evident because the sum signal has updates at regular
intervals that are smaller than the minimum intergeneration time of the
entity generators.
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Sum of Queue Lengths

Number of Entities

If you correct the simulation parameters by using simeventsconfig on this
model (with either the 'des' or 'hybrid' input argument), then the plot
reveals correct update times but incorrect values. To check the values, you can
connect the inputs and outputs of the Add block to separate Discrete Event
Signal to Workspace blocks and examine the data in the MATLAB workspace.

Sum of Queue Lengths

MNumber of Entities

A better model uses the discrete event subsystem illustrated in the
Time-Driven and Event-Driven Addition demo.

Unexpected Use of Old Value of Signal

During a discrete-event simulation, multiple events or signal updates can
occur at a fixed value of the simulation clock. If these events and signal
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updates are not processed in the sequence that you expect, then you might
notice that a computation or other operation uses a signal value from a
previous time instead of from the current time. Some common situations
occur when

® A block defers the update of an output signal until a departing entity has
finished advancing to a subsequent storage block, but an intermediate
nonstorage block in the sequence uses that signal in a computation or to
control an operation. Such deferral of updates applies to most SimEvents
blocks that have both an entity output port and a signal output port.

For an example, see “Example: Using a Signal or an Attribute” on page
13-19. For details, see “Interleaving of Block Operations” on page 14-8. For
a technique you can use when the situation involves the Output Switch
block’s p input signal, see “Using the Storage Option to Prevent Latency
Problems” on page 5-2.

® A computation involving multiple signals is performed before all of the
signals have been updated.

For details and an example, see “Update Sequence for Output Signals”
on page 3-18.

® An inappropriate processing sequence for simultaneous events causes a
signal update to occur after a block uses that signal in a computation or
to control an operation. See the example below.

For a technique you can use when the situation involves the Output Switch
block’s p input signal, see “Using the Storage Option to Prevent Latency
Problems” on page 5-2.

® A time-based block’s use of a value of an event-based signal persists until
the next time step of the time-based simulation clock, even if the block
producing the event-based signal has already updated the value. In many
cases, this is the correct behavior of the time-based block.

For an example, see “Example: Plotting Entity Departures to Verify
Timing” on page 10-10.

If you need a time-based block to respond to events, consider using a
discrete event subsystem as described in Chapter 9, “Controlling Timing
with Subsystems”.
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Example: Using a Signal or an Atiribute

The goal in the next model is to use a service time of N seconds for the Nth
entity. The Entity Counter block stores each entity’s index, N, in an attribute.
The top portion of the model uses the attribute directly to specify the service
time, while the bottom portion creates a signal representing the attribute
value and attempts to use the signal to specify the service time. These might
appear to be equivalent approaches, but in fact only the top approach satisfies
the goal.
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The plot of the time in the bottom server block reveals a modeling error in the
bottom portion of the model. The first entity’s service time is 0, not 1, while
the second entity’s service time is 1, not 2. The discrepancy between entity
index and service time occurs because the Get Attribute block processes the
departure of the entity before the update of the signal at the A1 signal output
port. That is, the server computes the service time for the newly arrived
entity before the Al signal reflects the index of that same entity. For more
information about this phenomenon, see “Interleaving of Block Operations”
on page 14-8.
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Latency in Signal Used as Semnice Time
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The top portion of the model, where the server directly uses the attribute
of each arriving entity, uses the expected service times. The phenomenon
involving sequential processing of an entity departure and a signal update
does not occur here because each entity carries its attributes with it.

Correct Use of Attribute for Senvice Time

6

Service Time

0 ) 10 15 20
Time

Tip If your entity possesses an attribute containing a desired service time,
switching criterion, timeout interval, or other quantity that a block can obtain
from either an attribute or signal, it is usually better to use the attribute
directly than to create a signal with the attribute’s value and ensure that the
signal is up-to-date when the entity arrives.
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Effect of Initial Condition on Signal Loops

When you create a loop in a signal connection, consider the effect of initial
conditions. If you need to specify initial conditions for event-based signals, see
“Specifying Initial Conditions for Event-Based Signals” on page 3-27.

Example: Intergeneration Time of Zero at Simulation Start
The model below is problematic at T=0 because the initial reading of the t
input signal representing the intergeneration time is 0. This signal does not
assume a positive value until the first entity departs from the Read Timer
block, which occurs after the first completion of service at T=1.

Modeling error at T=0
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A better model would use the technique described in “Specifying Initial
Conditions for Event-Based Signals” on page 3-27 to specify a nonzero initial
condition for the w output signal from the Read Timer block.
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Example: Absence of Sample Time Hit at Simulation Start

In the model below, the second server’s #n signal has no updates before the
first entity arrival there. As a result, the discrete event subsystem, whose role
is to perform a NOT operation on the #n signal, does not execute before the
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first entity arrival at the server. However, no entity can arrive at the server
until the gate opens. This logic causes entities to accumulate in the queue
instead of advancing past the gate and to the servers.

Modeling error atT=0
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A better model would use the technique described in “Specifying Initial
Conditions for Event-Based Signals” on page 3-27 to define a positive initial
condition for the en input signal to the gate.

Define initial i s 4—‘
condition at T =0 Mmem .r'r|. in bt

Dot Din falf

IS:ETH Latch Discrete Ewent Subsystem
NS Memoary NOT
value =1
en I 7 = #n
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% Plsim 2 U @ #a
: FIFO Queue Enabled &ate Single Server Single Senver! Diepla

Time-Baszed Entity Sink play

Entity Generatar

Example: Faulty Logic in Feedback Loop

The model below generates no entities because the logic is circular. The entity
generator is waiting for a change in its input signal, but the server’s output
signal never changes until an entity arrives or departs at the server.

13-22



Common Problems in SimEvents Models

Modeling error at T=0
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A better model would provide the first entity in a separate path. In the revised
model below, the Time-Based Entity Generator block generates exactly one
entity during the simulation, at T=0.

Luc ﬁijUT

Ewvent-Based

Entity Generator = 1M1 0> 1 #n iﬂ 0
M B TI  SSEN Y QuT b—s| 1N ofin @ a0
3Nz out T
ﬁbOUT Fath Cambiner FIFO Queue Single Sanver Entity Sink Display
Tirme-Based Provide first
Entity Generator entity
Period = Inf

Generate ertity at
simulation start = on

Loops in Entity Paths Without Storage Blocks

An entity path that forms a loop should contain a storage block. Storage
blocks include queues and servers; for a list of storage blocks, see “Storage
and Nonstorage Blocks” on page 14-9. The example below illustrates how the
storage block can prevent a deadlock.

Example: Deadlock Resulting from Loop in Entity Path

The model below contains a loop in the entity path from the Output Switch
block to the Path Combiner block. The problem occurs when the switch selects
the entity output port OUT2. The entity attempting to depart from the server
looks for a subsequent storage block where it can reside, and it cannot reside
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in a routing block. Until the entity confirms that it can advance to a storage
block, the entity cannot depart. However, until it departs, the server is not
available to accept a new arrival. The result is a deadlock.

Modeling error
when switch uses OUT2

BlIH1 3 LOUTT | 1N (]
:‘;;bDUT SR ouT :> Y OUT b I ouT bl I N :
= +
e ouT2 Entity Sink
Time-Based FIFO Queus Path Combiner Single Serer Output Switch
Entity Generator Swyitching criterion =
Round robin

A better model would include a server with a service time of 0 in the looped
entity path. This storage block provides a place for an entity to reside after
it departs from the Output Switch block. After the service completion event
is processed, the entity advances to the Path Combiner block and back to
the Single Server block. Notice also that the looped entity path connects

to the Path Combiner block’s IN1 entity input port, not IN2. This ensures
that entities on the looped path, not new entities from the queue, arrive back
at the Single Server block.

B|INT . LOUTI B|IN i
o Ut sl out + OUT has|n auT (N of |
Yo B|IN2 ‘ouT2 Entity Sink
Time-Based FIFO Queue Path Combiner Single Senver Output Switch
Entity Generatar Input port precedence = Swvitching criterion =
I port Round rokin
L)
| QLT 1M et
Provide Sturage

Infinite Server far entity in |DDp
Servicetime =0

Unexpected Timing of Random Signal

When you use the Event-Based Random Number block to produce a random
event-based signal, the block infers from a subsequent block the events upon
which to generate a new random number from the distribution. The sequence
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of times at which the block generates a new random number depends on the
port to which the block is connected and on events occurring in the simulation.
To learn how to use this block, see “Generating Random Signals” on page 3-4.

Example: Invalid Connection of Event-Based Random Number
Generator

The model below is incorrect because the Event-Based Random Number
block cannot infer from the p input port of an Output Switch block when to
generate a new random number. The Output Switch block is designed to
listen for changes in its p input signal and respond when a change occurs;
that is, the Output Switch cannot cause changes in the input signal value or
tell the random number generator when to generate a new random number.
The p input port of the Output Switch block is called a reactive port and it is
not valid to connect a reactive signal input port to the Event-Based Random
Number block.

Modeling error in block

noofln i connection
A T
Ewent-Based
Random Humber Entity Sk
OuTe p
P A2
tz,IbDUT B2 IN DUT»—La + + OuUTZ2 == N[ |
3 IN Y ouTa by
Time-Based FIFO Queue Output Switch Entity Sink1
Entity Generator
I
Entity Sink2

If your goal is to generate a new random number corresponding to each entity
that arrives at the switch, then a better model connects the Event-Based
Random Number block to a Set Attribute block and sets the Output Switch
block’s Switching criterion parameter to From attribute. The random
number generator then generates a new random number upon each entity
arrival at the Set Attribute block. The connection of the Event-Based Random
Number block to the Al input port of the Set Attribute block is a supported
connection because the A2 port is a notifying port. To learn more about
reactive ports and notifying ports, see the reference page for the Event-Based
Random Number block.
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Unexpected Correlation of Random Processes

An unexpected correlation between random processes could result from equal
initial seeds in different dialog boxes. If you copy and paste blocks that have
an Initial seed parameter, the parameter values do not change unless you
manually change them. Such blocks include

Time-Based Entity Generator
Event-Based Random Number
Uniform Random Number
Random Number

Blocks in the Routing library

To make Initial seed parameters unique among blocks in the currently
selected system, enter the following code in the MATLAB Command Window.

% Generate a vector of large odd numbers.
newseed = (50001 : 2 : 59999);

% Randomly permute the numbers to avoid always using the same set of seeds.
perm = randperm(length(newseed));

paramname = {'initialseed', 'seed'}; % Parameter names to consider
np = length(paramname);
idx = 1;



Common Problems in SimEvents Models

for jj=1:np
% Find blocks that have the parameter with a numerical value
% (not a variable or other expression).

blocks = find_system(bdroot, 'RegExp', 'on', 'LookUnderMasks','all’,...

paramname{jj}, " '\d+");

% Replace initial seed parameter values with numbers from

% the vector.

for kk = 1:1length(blocks)
newseedparamvalue = num2str(newseed(perm(idx)));
idx = idx + 1;
set_param(blocks{kk},paramname{jj},newseedparamvalue);
disp(['Setting parameter to ' newseedparamvalue ' in '

strrep(blocks{kk},char(10),"' ') '.'1);
end
end
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When a model contains at least one SimEvents block, the model’s
Configuration Parameters dialog box has a tab with parameters specific to
discrete-event simulation.

E=ecution order of simultaneous events:l Arbitrary j

Ewvent Log

[~ Dizplay events in event calendar
[~ Log events when executed
[~ Log everts when scheduled

[~ Log entities advancing from black ta block

Execution order of simultaneous events
If you select Arbitrary, an internal algorithm determines the sequence
for processing simultaneous events having equal priorities. If you select
Randomized, all possible sequences have equal probability. In either
case, the processing sequence might be different from the sequence
in which the events were scheduled on the event calendar. For more
information, see “Events with Equal Priorities” on page 2-16.

Seed for event randomization
The initial seed of the random number generator used to determine the
sequence for processing simultaneous events having equal priorities.
For a given seed, the generator’s output is repeatable. This field
appears only if you set Execution order of simultaneous events
to Randomized.

Display events in event calendar
If you select this option, the MATLAB Command Window displays a
message and the list of events in the event calendar, each time an event
is either scheduled or processed. For more information, see “Logging
the List of Events” on page 13-5.

Log events when executed
If you select this option, the MATLAB Command Window displays a
message each time an event is processed. For more information, see
“Logging the Processing of Events” on page 13-3.
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Log events when scheduled
If you select this option, the MATLAB Command Window displays a
message each time an event is scheduled on the event calendar. For
more information, see “Logging the Scheduling of Events” on page 13-4.

Log entities advancing from block to block
If you select this option, the MATLAB Command Window displays
information about entities advancing from block to block. For more
information, see “Viewing Entity Locations” on page 13-9.
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How SimEvents Works

Complementing the information in “How Simulink Works” and “Simulating
Dynamic Systems” in the Simulink documentation, this section describes
some aspects that are different for models that involve both time-based and
event-based processing.

Notifications and Queries Among When and why SimEvents blocks
Blocks (p. 14-2) interact with each other, and the
impact on simulation behavior

Notifying, Monitoring, and Reactive  Types of signal input ports in

Ports (p. 14-4) SimEvents blocks

Interleaving of Block Operations Sequence of block operations and the
(p. 14-8) impact on simulation behavior
Zero-Duration Values and Caveats and techniques for working

Time-Based Blocks (p. 14-17) with multivalued signals
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Notifications and Queries Among Blocks

In a variety of situations, a SimEvents block notifies other blocks about
changes in its status or queries other blocks about their status. These
interactions among blocks are essential to the proper functioning of a
discrete-event simulation. The interactions occur automatically without being
reported to you explicitly.

This section gives examples of several types of notifications and queries. The
topics are

* “Querying Whether a Subsequent Block Can Accept an Entity” on page 14-2
¢ “Notifying Blocks About Status Changes” on page 14-3

Querying Whether a Subsequent Block Can Accept
an Entity

Before a SimEvents block outputs an entity, it queries the next block to
determine whether that block can accept the entity. For example,

¢ When an entity arrives at an empty FIFO Queue block, the queue queries
the next block. If that block can accept an entity, the queue outputs the
entity at the head of the queue; otherwise, the queue holds the entity.

e While a Single Server block is busy serving, it does not query the next
block. Upon completion of the service time, the server queries the next
block. If that block can accept an entity, the server outputs the entity that
has completed its service; otherwise, the server holds the entity.

¢ When an entity attempts to arrive at a Replicate block, the block queries
each of the blocks connected to its entity output ports. If all of them can
accept an entity, then the Replicate block copies its arriving entity and
outputs the copies; otherwise, the block does not permit the entity to arrive
there and the entity must stay in a preceding block.

¢ When a Time-Based Entity Generator block generates a new entity, it
queries the next block. If that block can accept an entity, then the generator
outputs the new entity; otherwise, the behavior of the Time-Based Entity
Generator block depends on the value of its Response when blocked
parameter.
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® When a block (for example, a Single Server block) attempts to advance an
entity to the Input Switch block, the server uses a query to check whether it
is connected to the currently selected entity input port of the Input Switch
block. If so, the Input Switch queries the next block to determine whether
it can accept the entity because the Input Switch block cannot hold an
entity for a nonzero duration.

Notifying Blocks About Status Changes

When a SimEvents block undergoes certain kinds of status changes, it notifies
other blocks of the change. This notification might cause the other blocks to
change their behavior or status in some way, depending on the circumstances.
For example,

* When an entity departs from a Single Server block, it notifies the preceding
block that the server’s entity input port has changed from unavailable
to available.

* When an entity departs from a queue that was full to capacity, the queue
notifies the preceding block that the queue’s entity input port has changed
from unavailable to available.

¢ When a Path Combiner block receives notification that the next block’s
entity input port has changed from unavailable to available, the Path
Combiner block’s entity input ports also become available. The block
notifies preceding blocks that its entity input ports are available.

This case is subtle because the Path Combiner block usually has more than
one block to notify, and the sequence of notifications can be significant. See
the block’s reference page for more information about the options.

* When an entity arrives at a Single Server block that has a t signal input
port representing the service time, that port notifies the preceding block
of the need for a new service time value. If the preceding block is the
Event-Based Random Number block, then it responds by generating a new
random number that becomes the service time for the arriving entity.
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Notifying, Monitoring, and Reactive Ports

* “Notifying Ports” on page 14-4

® “Monitoring Ports” on page 14-5

® “Reactive Ports” on page 14-6

Signal input ports of SimEvents blocks fall into these categories:

® Notifying ports, which notify the preceding block when a certain event
has occurred

® Monitoring ports, which help you observe signal values

® Reactive ports, which listen for updates or changes in the input signal and

cause an appropriate reaction in the block possessing the port

The distinctions are relevant when you use the Event-Based Random Number
or Event-Based Sequence block. For details, see these topics:

¢ Event-Based Random Number reference page

¢ Event-Based Sequence reference page

® “Generating Random Signals” on page 3-4

e “Using Data Sets to Create Event-Based Signals” on page 3-9

Notifying Ports

Notifying ports, listed in the table below, notify the preceding block when a
certain event has occurred. When the preceding block is the Event-Based
Random Number or Event-Based Sequence block, it responds to the
notification by generating a new output value.

List of Notifying Ports

Signal Input Port Block Generate New Output Value Upon
Al, A2 A3, etc. Set Attribute Entity arrival
in Signal Latch Write event
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List of Notifying Ports (Continued)

Signal Input Port Block Generate New Output Value Upon
el, e2 Entity Departure Entity arrival
Event to

Function-Call Event

Signal-Based Event to
Function-Call Event

Relevant signal-based event, depending on
configuration of block

t Signal-Based Event to
Function-Call Event

Revelant signal-based event, depending on
configuration of block

t Infinite Server

Entity arrival

N-Server

Entity arrival

Single Server

Entity arrival

t Time-Based Entity Simulation start and subsequent entity
Generator departures

ti Schedule Timeout Entity arrival

x X-Y Signal Scope Sample time hit at in signal input port

Monitoring Ports

Monitoring ports, listed in the table below, help you observe signal values.
Optionally, you can use a branch line to connect the Event-Based Random
Number or Event-Based Sequence block to one or more monitoring ports.
These connections do not cause the block to generate a new output, but merely
enable you to observe the signal.
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List of Monitoring Ports

Signal Input Port

Block

Unlabeled Discrete Event Signal to Workspace
in Signal Scope

X-Y Signal Scope
ts, tr, ve Instantaneous Event Counting Scope

Reactive Ports

Reactive ports, listed in the table below, listen for relevant updates in the

input signal and cause an appropriate reaction in the block possessing the
port. For example, the p port on a switch listens for changes in the input

signal; the block reacts by selecting a new switch port.

List of Reactive Ports

Signal Input Port

Block

Relevant Update

en Enabled Gate Value change from nonpositive to positive, and
vice versa
P Input Switch Value change
Output Switch
Path Combiner
ts, tr, ve Entity Departure

Counter

Event-Based Entity
Generator

Release Gate

Signal-Based Event to
Function-Call Event

Signal-Based
Function-Call Event
Generator

Sample time hit at ts port
Appropriate trigger at tr port
Appropriate value change at ve port
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List of Reactive Ports (Continued)

Signal Input Port

Block

Relevant Update

wts, wtr, wve, rts,
rtr, rve

Signal Latch

Sample time hit at wts or rts port
Appropriate trigger at wtr or rtr port
Appropriate value change at wve or rve port

Input port
corresponding to
Discrete Event Inport
block in subsystem

Discrete Event
Subsystem

Sample time hit at that input port

For triggers and value changes, “appropriate” refers to the direction you
specify in a Type of change in signal value or Trigger type parameter in

the block’s dialog box.

14-7



14 How SimEvents Works

14-8

Interleaving of Block Operations

During the simulation of a SimEvents model, some sequences of block
operations become interleaved when the application processes them.
Interleaving can affect the simulation behavior. This section describes and
illustrates interleaved block operations to help you understand the processing
and make appropriate modeling choices. The topics are

o “How Interleaving of Block Operations Occurs” on page 14-8
® “Storage and Nonstorage Blocks” on page 14-9
e “Example: Sequence of Departures and Statistical Updates” on page 14-10

e “Example: Using the Event Calendar to Prevent Interleaving” on page
14-14

How Interleaving of Block Operations Occurs

At all simulation times from an entity’s generation to destruction, the entity
resides in a block (or more than one block, if the entity advances from block
to block at a given time instant). Blocks capable of holding an entity for a
nonzero duration are called storage blocks. Blocks that permit an entity
arrival but must output the entity at the same value of the simulation clock
are called nonstorage blocks. During a simulation, whenever an entity
departs from a block, the application processes enough queries, departures,
arrivals, and other block operations until a subsequent storage block detects
the entity’s arrival. Some block operations, including the updates of statistical
output signals that are intended to be updated after the entity’s departure,
are deferred until after a subsequent storage block detects the entity’s arrival.

Furthermore, entity advancement is not an atomic operation and the
application might process other block operations between portions of the
entity-advancement processing. Such interleaving of block operations can be
undesirable in some circumstances, especially in models containing feedback
loops.

To change the sequence of block operations, you might want to use one or
more of these techniques:
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Insert storage blocks in key locations along entity paths in your model
to change the sequence of block operations, as illustrated in “Example:
Sequence of Departures and Statistical Updates” on page 14-10.

Use the event calendar to defer operations until an entity’s departure
processing is complete, as illustrated in “Example: Using the Event
Calendar to Prevent Interleaving” on page 14-14.

Storage and Nonstorage Blocks
The lists of storage and nonstorage blocks in SimEvents are as follows.

Storage Blocks

Blocks in Queues library (However, these can act like nonstorage blocks in
some circumstances; see the note below.)

Blocks in Servers library
Blocks in Entity Generators library

Output Switch block with the Store entity before switching option
selected

Entity Sink block

Attribute Scope, X-Y Attribute Scope, and Instantaneous Entity Counting
Scope blocks when configured as a sink, that is, without an entity output
port

Note In the special case of an entity arriving at an empty queue whose
entity output port is not blocked, the queue acts like a nonstorage block in
that block operations are deferred until the entity’s arrival at a storage block
subsequent to the queue.

Nonstorage Blocks

Blocks in Attributes library

Blocks in Routing library, except the Output Switch block with the Store
entity before switching option selected

Blocks in Gates library
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¢ Blocks in the Entity Management library

® Blocks in Timing library

® Blocks in Probes library

® Attribute Scope, X-Y Attribute Scope, and Instantaneous Entity Counting
Scope blocks when configured with an entity output port

¢ Entity Departure Event to Function-Call Event block

¢ Entity-Based Function-Call Event Generator block

Example: Sequence of Departures and Statistical
Updates

Consider the sequence of operations in the Time-Based Entity Generator, Set
Attribute, and Attribute Scope blocks shown below.

#d ot
o » 4 |1y £
Ty t-1] QUT B—33{IN 2
ouT = [T I U]
Time-Bazed Set Attribute Attribute Seope

Entity Generator

At each time T =1, 2, 3,..., 10, Simulink processes the following operations in
the order listed:

Order

Operation

Block

1

Entity generation

Time-Based Entity Generator

2 Entity departure Time-Based Entity Generator
3 Arrival at nonstorage block Set Attribute
4 Assignment of attribute using value | Set Attribute
at Al signal input port
5 Entity departure Set Attribute
6 Arrival at storage block Attribute Scope
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Order| Operation Block

7 Update of plot Attribute Scope

8 Update of signal at #d signal output | Time-Based Entity Generator
port

The final operation of the Time-Based Entity Generator block is deliberately
processed after operations of subsequent blocks in the entity path are
processed. This explains why the plot shows a value of 0, not 1, at T=1.

Entity Index vs. Time

Entity Index

[—

0 2 4

Points: 10

Altering the Processing Sequence

If you want to be sure that the Set Attribute block reads the value at the Al
signal input port after the Time-Based Entity Generator block has updated
its #d output signal, then insert a storage block between the two blocks. In
this simple model, you can use a Single Server block with a Service time

parameter of 0. The model, table, and plot are below.
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|
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Time-Based
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-1, OUT
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Set Attribute

¢

Attribute Scope
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Order

Operation

Block

Entity generation

Time-Based Entity Generator

2 Entity departure Time-Based Entity Generator

3 Arrival at storage block Single Server

4 Update of signal at #d signal output | Time-Based Entity Generator
port

5 Service completion Single Server

6 Entity departure Single Server

7 Arrival at nonstorage block Set Attribute

8 Assignment of attribute using value | Set Attribute
at Al signal input port

9 Entity departure Set Attribute

10 Arrival at storage block Attribute Scope

11 Update of plot Attribute Scope
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Entity Index
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Consequences of Inserting a Storage Block

If the storage block you have inserted to alter the processing sequence holds
the entity longer than you expect (beyond the zero-duration service time, for
example), be aware that your simulation might change in other ways. You
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should consider the impact of either inserting or not inserting the storage

block.

For example, suppose you add a gate block to the preceding example and view
the average intergeneration time, w, of the entity generator block. When the
gate is closed, a newly generated entity cannot advance immediately to the
scope block. Whether this entity stays in the entity generator or a subsequent
server block affects the w signal, as shown in the figures below.
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+
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Entity Index vs. Time, Without Storage Block
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o ot L]
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Points: 6 Time

Model with Gate and Without Storage Block

Enablaed Gate

-1

Attribute Scope

When a storage block is present, the first pending entity stays there instead
of in the entity generator. The earlier departure of the first entity from the
entity generator increases the value of the w signal.
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Model with Gate and Storage Block

Example: Using the Event Calendar to Prevent

Interleaving

This example illustrates how putting an event on the event calendar can

prevent an undesirable interleaving of operations. The model below aims
to follow the departure of each entity from the server with the generation
of a new entity. The Entity-Based Function-Call Event Generator has the
Generate function call parameter set to After entity departure.
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L f 11—
L 1
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Function-Call

Event-Based Single Server Entity-Based
Generator ) Fundticncall —
X Entity Generator unction-Ca Instantanecus Entity
Sample time = 18 Ewent Generator Counting Scope

Rezponge during
blockage period =
Dizcard generated entities

The Function-Call Generator causes generation of the first entity at T=0.
When this entity completes its service, these operations occur simultaneously
in sequence:

1 The Single Server block starts processing the departure of the entity.

2 The Instantaneous Entity Counting Scope block, configured as a sink,
detects the arrival of the entity.

3 The Entity-Based Function-Call Event Generator block generates a
function call.

4 The Event-Based Entity Generator block, with default parameter values,
responds to the function call by generating an entity immediately. The
entity finds the server unavailable, and the generator responds to the
blockage by discarding the entity.

5 The Single Server block completes its processing of the departure of the
first entity. At this point, the server is available but the entity intended
to enter the server has already been discarded.

Note The reason the server is unavailable is that entity advancement is
not an atomic operation and the generation of the function call becomes
interleaved between portions of the entity-advancement processing. The
feedback loop in this model makes such interleaving undesirable.

To prevent the Event-Based Entity Generator block from generating the
entity too soon, you can put the generation event on the event calendar by
selecting Resolve simultaneous signal updates according to event
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priority in the generator block. The simulation now exhibits this sequence of
simultaneous events when the first entity completes its service:

1 The Instantaneous Entity Counting Scope block detects the arrival of
the entity, although the Single Server block has not yet completed its
processing of the departure of that entity.

2 The Entity-Based Function-Call Event Generator block generates a
function call.

3 The Event-Based Entity Generator block reacts to the function call by
scheduling an event on the event calendar for the current time.

4 The Single Server block completes its processing of the departure of the
entity.

5 The event calendar causes the Event-Based Entity Generator block to
generate an entity. The entity finds the server available.

6 The entity advances to the server.
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Zero-Duration Values and Time-Based Blocks

Because time-based simulations involve signals that assume a unique value
at each value of the simulation clock, some blocks designed for time-based
simulations recognize only one value of a signal per time instant. Because
zero-duration values commonly occur in discrete-event simulations (for
example, statistical output signals from SimEvents blocks), you should be
aware of techniques for working with zero-duration values. The table below
lists examples of time-based blocks that recognize one signal value per time
instant, along with similar blocks or techniques that recognize multivalued

signals.

Time-Based Block

Block or Technique for Working with
Multivalued Signals

Scope Signal Scope in the SimEvents Sinks library

To Workspace Discrete Event Signal to Workspace in the SimEvents
Sinks library. Alternatively, put the To Workspace
block in a discrete event subsystem.

Triggered Discrete Event Subsystem in the SimEvents

Subsystem Ports and Subsystems library, with the Discrete

Event Inport block configured to execute the
subsystem upon trigger edges. Alternatively, use the
Signal-Based Event to Function-Call Event block in
the Event Translation library to convert the trigger
signal to a function call, and then use a Function-Call
Subsystem instead of a Triggered Subsystem.

Stateflow with a
trigger input signal

Use the Signal-Based Event to Function-Call Event
block in the Event Translation library to convert
the trigger signal to a function call, then call the
Stateflow block with a function-call signal instead
of a trigger signal.

For an example comparing the Scope viewer with the Signal Scope block, see
“Comparison with Time-Based Plotting Tools” on page 10-16.
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Example: Using a #n Signal as a Trigger

Suppose you want to call a subsystem each time the #n signal from a Single
Server block rises from 0 to 1. This signal is 0 when the server is not storing
an entity and 1 when the server is storing an entity. It is common for an
entity to arrive at a server at the same time instant that the previous entity
departed from the server. In this case, the #n signal changes from 1 to 0 and
back to 1 in the same time instant. A time-based block that recognizes only
one value of a signal per time instant might not recognize a rising edge that
occurs in a time interval of length zero.

This example uses a Counter Free-Running block inside a subsystem to count
the number of times the subsystem is called. (Be aware that the Counter
Free-Running block starts counting from zero, not one.)

[0]

function

g D

Out1

N1 Teminator Counter
Free-Running

The discrete-event portion of the simulation involves a D/D/1 queuing system
in which the server is never idle for a nonzero period of time. As a result, the
#n signal exhibits many zero-duration values, shown in the plot below.

MNumber of Entities in Single Server

] R S e TS R

Number of Entities



Zero-Duration Values and Time-Based Blocks

The example uses two approaches to try to call the subsystem each time the
server’s #n signal rises from 0 to 1:

® The approach using a Triggered Subsystem is unsuitable because it does
not count changes that occur in a time interval of length zero. You can see
from the Display block that the triggered subsystem is never called.

¢ The approach using function calls is appropriate because the Signal-Based
Event to Function-Call Event block recognizes rising edges of #n even when
they involve zero-duration values. The block converts these rising edges
into function calls to which the Function-Call Subsystem responds.
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Examples

Use this list to find examples in the documentation.



A Examples

Atributes of Entities

“Example: Setting Attributes” on page 1-14
“When to Use Attributes” on page 1-16

Counting Entities

“Example: Counting Simultaneous Departures from a Server” on page 1-21
“Example: Resetting a Counter After a Transient Period” on page 1-22

Working with Events

“Example: Comparing Types of Signal-Based Events” on page 2-4
“Example: Race Conditions at a Switch” on page 2-25

“Events On and Off the Event Calendar” on page 2-31

“Example: Observing Service Completions” on page 2-38
“Example: Detecting Collisions by Comparing Events” on page 2-40
“Example: Opening a Gate Upon Random Events” on page 2-45
“Example: Counting Events from Multiple Sources” on page 2-48

Queuing Systems

“Example: Event Calendar for a Queue-Server Model” on page 2-17
“Example: Waiting Time in LIFO Queue” on page 4-2

“Example: Serving Preferred Customers First” on page 4-7
“Example: Preemption by High-Priority Entities” on page 4-11
“Example: M/M/5 Queuing System” on page 4-13

“Example: Using Servers in Shifts” on page 6-11



Working with Signals

Working with Signals

“Example:
“Example:
“Example:

Server States

“Example:
“Example:

Routing Entities

“Example:
“Example:
“Example:

Batching

“Example:

Gates

“Example:
“Example:
“Example:
“Example:

Creating a Random Signal for Switching” on page 3-5
Resampling a Signal Based on Events” on page 3-28
Sending Queue Length to the Workspace” on page 3-31

Failure and Repair of a Server” on page 4-17
Adding a Warmup Phase” on page 4-19

Cascaded Switches with Skewed Distribution” on page 5-6
Compound Switching Logic” on page 5-7
Choosing the Shortest Queue” on page 6-3

Varying Fluid Flow Rate Based on Batching Logic” on page 6-6

Controlling Joint Availability of Two Servers” on page 7-4
Synchronizing Service Start Times with the Clock” on page 7-6
Opening a Gate Upon Entity Departures” on page 7-7

First Entity as a Special Case” on page 7-10
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Examples

Timeouts

“Basic Example Using Timeouts” on page 8-3
“Defining Entity Paths on Which Timeouts Apply” on page 8-7

“Example:
“Example:

8-12

“Example:

Dropped and Timed-Out Packets” on page 8-11
Rerouting Timed-Out Entities to Expedite Handling” on page

Limiting the Time Until Service Completion” on page 8-14

Discrete Event Subsystems

“Example:
“Example:
“Example:

page 9-20

“Example:
“Example:

9-22

“Example:
“Example:
“Example:
“Example:
“Example:

9-32

Troubleshooting

“Example:
“Example:
“Example:
“Example:
“Example:
“Example:
“Example:
“Example:

Comparing the Lengths of Two Queues” on page 9-17
Normalizing a Statistic to Use for Routing” on page 9-18
Using Event-Based Timing for a Statistical Computation” on

Ending the Simulation Upon an Event” on page 9-21
Sending Unrepeated Data to the MATLAB Workspace” on page

Focusing on Events, Not Values” on page 9-23

Detecting Changes from Empty to Nonempty” on page 9-24
Logging Data About the First Entity on a Path” on page 9-25
Using Entity-Based Timing for Choosing a Port” on page 9-30
Performing a Computation on Selected Entity Paths” on page

Plotting Entity Departures to Verify Timing” on page 10-10
Plotting Event Counts to Check for Simultaneity” on page 10-14
Event Logging” on page 13-6

Entity Logging” on page 13-10

Time-Based Addition of Event-Based Signals” on page 13-16
Intergeneration Time of Zero at Simulation Start” on page 13-21
Absence of Sample Time Hit at Simulation Start” on page 13-21
Faulty Logic in Feedback Loop” on page 13-22



Statistics

“Example: Deadlock Resulting from Loop in Entity Path” on page 13-23
“Example: Invalid Connection of Event-Based Random Number Generator”
on page 13-25

“Example: Sequence of Departures and Statistical Updates” on page 14-10
“Example: Using the Event Calendar to Prevent Interleaving” on page
14-14

“Example: Using a #n Signal as a Trigger” on page 14-18

Statistics

“Example: Fraction of Dropped Messages” on page 11-8

“Example: Computing a Time Average of a Signal” on page 11-10
“Example: Resetting an Average Periodically” on page 11-12

“Example: Running a Simulation Repeatedly to Gather Results” on page
11-28

“Example: Running a Simulation and Varying a Parameter” on page 11-30

Timers

“Basic Example Using Timer Blocks” on page 11-19

“Timing Multiple Entity Paths with One Timer” on page 11-21
“Restarting a Timer from Zero” on page 11-23

“Timing Multiple Processes Independently” on page 11-24
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